Adaptive Large Neighborhood Self-Regular Predictor-Corrector IPMs for LO

It is known that predictor-corrector methods in a large neighborhood of the central path are among the most efficient interior point methods (IPMs) for linear optimization (LO) problems. The best iteration bound based on the classical logarithmic barrier function is $O\left(n\log{\frac{n}{\epsilon}}\right)$. In this paper we propose a family of self-regular proximity based predictor-corrector (SR-PC) IPM … Read more

On Implementing Self-Regular Proximity Based Feasible IPMs

Self-regular based interior point methods present a unified novel approach for solving linear optimization and conic optimization problems. So far it was not known if the new Self-Regular IPMs can lead to similar advances in computational practice as shown in the theoretical analysis. In this paper, we present our experiences in developing the software package … Read more

Interior Point and Semidefinite Approaches in Combinatorial Optimization

Interior-point methods (IPMs), originally conceived in the context of linear programming have found a variety of applications in integer programming, and combinatorial optimization. This survey presents an up to date account of IPMs in solving NP-hard combinatorial optimization problems to optimality, and also in developing approximation algorithms for some of them. The surveyed approaches include … Read more

An Adaptive Self-Regular Proximity Based Large-Update IPM for LO

Primal-Dual Interior-Point Methods (IPMs) have shown their power in solving large classes of optimization problems. However, there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results with respect to the update strategies of the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy the best … Read more

The Complexity of Self-Regular Proximity Based Infeasible IPMs

Primal-Dual Interior-Point Methods (IPMs) have shown their power in solving large classes of optimization problems. In this paper a self-regular proximity based Infeasible Interior Point Method (IIPM) is proposed for linear optimization problems. First we mention some interesting perties of a specific self-regular proximity function, studied recently by Peng and Terlaky, and use it to … Read more

A predictor-corrector algorithm for linear optimization based on a specific self-regular proximity function

It is well known that the so-called first-order predictor-corrector methods working in a large neighborhood of the central path are among the most efficient interior-point methods (IPMs) for linear optimization (LO) problems. However, the best known iteration complexity of this type of methods is $O\br{n \log\frac{(x^0)^Ts^0}{\varepsilon}}$. It is of interests to investigate whether the complexity … Read more

A Dynamic Large-Update Primal-Dual Interior-Point Method for Linear Optimization

Primal-dual interior-point methods (IPMs) have shown their power in solving large classes of optimization problems. However, at present there is still a gap between the practical behavior of these algorithms and their theoretical worst-case complexity results, with respect to the strategies of updating the duality gap parameter in the algorithm. The so-called small-update IPMs enjoy … Read more

A conic formulation for hBcnorm optimization

In this paper, we formulate the $l_p$-norm optimization problem as a conic optimization problem, derive its standard duality properties and show it can be solved in polynomial time. We first define an ad hoc closed convex cone, study its properties and derive its dual. This allows us to express the standard $l_p$-norm optimization primal problem … Read more

A New and Efficient Large-Update Interior-Point Method for Linear Optimization

Recently, the authors presented a new large-update primal-dual method for Linear Optimization, whose $O(n^\frac23\,\log\frac{n}{\e})$ iteration bound substantially improved the classical bound for such methods, which is $O\br{n\log\frac{n}{\e}}$. In this paper we present an improved analysis of the new method. The analysis uses some new mathematical tools developed before when we considered a whole family of … Read more

On implementing a primal-dual interior-point method for conic quadratic optimization

Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic … Read more