The Split Common Null Point Problem

We introduce and study the Split Common Null Point Problem (SCNPP) for set-valued maximal monotone mappings in Hilbert spaces. This problem generalizes our Split Variational Inequality Problem (SVIP) [Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algorithms 59 (2012), 301–323]. The SCNPP with only two set-valued mappings entails … Read more

A von Neumann Alternating Method for Finding Common Solutions to Variational Inequalities

Modifying von Neumann’s alternating projections algorithm, we obtain an alternating method for solving the recently introduced Common Solutions to Variational Inequalities Problem (CSVIP). For simplicity, we mainly confine our attention to the two-set CSVIP, which entails finding common solutions to two unrelated variational inequalities in Hilbert space. Citation Nonlinear Analysis Series A: Theory, Methods & … Read more

Weak and Strong Convergence of Algorithms for the Split Common Null Point Problem

We introduce and study the Split Common Null Point Problem (SCNPP) for set-valued maximal monotone mappings in Hilbert space. This problem generalizes our Split Variational Inequality Problem (SVIP) [Y. Censor, A. Gibali and S. Reich, Algorithms for the split variational inequality problem, Numerical Algorithms, accepted for publication, DOI 10.1007/s11075-011-9490-5]. The SCNPP with only two set-valued … Read more

Total variation superiorization schemes in proton computed tomography image reconstruction

Purpose: Iterative projection reconstruction algorithms are currently the preferred reconstruction method in proton computed tomography (pCT). However, due to inconsistencies in the measured data arising from proton energy straggling and multiple Coulomb scattering, noise in the reconstructed image increases with successive iterations. In the current work, we investigated the use of total variation superiorization (TVS) … Read more

The Split Variational Inequality Problem

We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert … Read more

Perturbation resilience and superiorization of iterative algorithms

Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as finding a common point in the intersection of a finite number of convex sets, there often exist iterative algorithms that impose very little demand on computer resources. For other problems, such as finding that point in the intersection at which the … Read more

On the Effectiveness of Projection Methods for Convex Feasibility

The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of … Read more

On String-Averaging for Sparse Problems and On the Split Common Fixed Point Problem

We review the common fixed point problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We present our recent definition of sparseness of a family of operators and discuss a string-averaging algorithmic scheme that favorably handles the common fixed points problem … Read more

A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin

In a recent paper by Strohmer and Vershynin (J. Fourier Anal. Appl. 15:262–278, 2009) a “randomized Kaczmarz algorithm” is proposed for solving consistent systems of linear equations {ai, x = bi }m i=1. In that algorithm the next equation to be used in an iterative Kaczmarz process is selected with a probability proportional to ai2. … Read more

Seminorm-induced oblique projections for sparse nonlinear convex feasibility problems

Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using generalized … Read more