Approaches to iterative algorithms for solving nonlinear equations with an application in tomographic absorption spectroscopy

In this paper we propose an approach for solving systems of nonlinear equations without computing function derivatives. Motivated by the application area of tomographic absorption spectroscopy, which is a highly-nonlinear problem with variables coupling, we consider a situation where straightforward translation to a fixed point problem is not possible because the operators that represent the … Read more

The best approximation pair problem relative to two subsets in a normed space

In the classical best approximation pair (BAP) problem, one is given two nonempty, closed, convex and disjoint subsets in a finite- or an infinite-dimensional Hilbert space, and the goal is to find a pair of points, each from each subset, which realizes the distance between the subsets. This problem, which has a long history, has … Read more

Per-RMAP: Feasibility-Seeking and Superiorization Methods for Floorplanning with I/O Assignment

The feasibility-seeking approach provides a systematic scheme to manage and solve complex constraints for continuous problems, and we explore it for the floorplanning problems with increasingly heterogeneous constraints. The classic legality constraints can be formulated as the union of convex sets. However, the convergence of conventional projection-based algorithms is not guaranteed when the constraints sets … Read more

The alternating simultaneous Halpern-Lions-Wittmann-Bauschke algorithm for finding the best approximation pair for two disjoint intersections of convex sets

Given two nonempty and disjoint intersections of closed and convex subsets, we look for a best approximation pair relative to them, i.e., a pair of points, one in each intersection, attaining the minimum distance between the disjoint intersections. We propose an iterative process based on projections onto the subsets which generate the intersections. The process … Read more

Superiorization: The asymmetric roles of feasibility-seeking and objective function reduction

The superiorization methodology can be thought of as lying conceptually between feasibility-seeking and constrained minimization. It is not trying to solve the full-fledged constrained minimization problem composed from the modeling constraints and the chosen objective function. Rather, the task is to find a feasible point which is “superior” (in a well-defined manner) with respect to … Read more

Regularized Nonsmooth Newton Algorithms for Best Approximation

We consider the problem of finding the best approximation point from a polyhedral set, and its applications, in particular to solving large-scale linear programs. The classical projection problem has many various and many applications. We study a regularized nonsmooth Newton type solution method where the Jacobian is singular; and we compare the computational performance to … Read more

Superiorization as a novel strategy for linearly constrained inverse radiotherapy treatment planning

Objective: We apply the superiorization methodology to the intensity-modulated radiation therapy (IMRT) treatment planning problem. In superiorization, linear voxel dose inequality constraints are the fundamental modeling tool within which a feasibility-seeking projection algorithm will seek a feasible point. This algorithm is then perturbed with gradient descent steps to reduce a nonlinear objective function. Approach: Within … Read more

The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning

In this paper we study the split minimization problem that consists of two constrained minimization problems in two separate spaces that are connected via a linear operator that maps one space into the other. To handle the data of such a problem we develop a superiorization approach that can reach a feasible point with reduced … Read more

A generalized block-iterative projection method for the common fixed point problem induced by cutters

The block-iterative projections (BIP) method of Aharoni and Censor [Block-iterative projection methods for parallel computation of solutions to convex feasibility problems, Linear Algebra and its Applications 120, (1989), 165-175] is an iterative process for finding asymptotically a point in the nonempty intersection of a family of closed convex subsets. It employs orthogonal projections onto the … Read more

Limits of eventual families of sets with application to algorithms for the common fixed point problem

We present an abstract framework for asymptotic analysis of convergence based on the notions of eventual families of sets that we define. A family of subsets of a given set is called here an “eventual family” if it is upper hereditary with respect to inclusion. We define accumulation points of eventual families in a Hausdorff … Read more