Post-Processing with Projection and Rescaling Algorithms for Semidefinite Programming

We propose the algorithm that solves the symmetric cone programs (SCPs) by iteratively calling the projection and rescaling methods the algorithms for solving exceptional cases of SCP. Although our algorithm can solve SCPs by itself, we propose it intending to use it as a post-processing step for interior point methods since it can solve the … Read more

Riemannian Interior Point Methods for Constrained Optimization on Manifolds

We extend the classical primal-dual interior point method from the Euclidean setting to the Riemannian one. Our method, named the Riemannian interior point method (RIPM), is for solving Riemannian  constrained optimization problems. We establish its local superlinear and quadratic convergence  under the standard assumptions. Moreover, we show its global convergence when it is combined with … Read more

A New Extension of Chubanov’s Method to Symmetric Cones

We propose a new variant of Chubanov’s method for solving the feasibility problem over the symmetric cone by extending Roos’s method (2018) of solving the feasibility problem over the nonnegative orthant. The proposed method considers a feasibility problem associated with a norm induced by the maximum eigenvalue of an element and uses a rescaling focusing … Read more

Completely Positive Factorization by a Riemannian Smoothing Method

Copositive optimization is a special case of convex conic programming, and it optimizes a linear function over the cone of all completely positive matrices under linear constraints. Copositive optimization provides powerful relaxations of NP-hard quadratic problems or combinatorial problems, but there are still many open problems regarding copositive or completely positive matrices. In this paper, … Read more

Evaluating approximations of the semidefinite cone with trace normalized distance

We evaluate the dual cone of the set of diagonally dominant matrices (resp., scaled diagonally dominant matrices), namely ${\cal DD}_n^*$ (resp., ${\cal SDD}_n^*$), as an approximation of the semidefinite cone. We prove that the norm normalized distance, proposed by Blekherman et al. (2022), between a set ${\cal S}$ and the semidefinite cone has the same … Read more

Centering ADMM for the Semidefinite Relaxation of the QAP

We propose a new method for solving the semidefinite (SD) relaxation of the quadratic assignment problem (QAP), called the Centering ADMM. The Centering ADMM is an alternating direction method of multipliers (ADMM) combining the centering steps used in the interior-point method. The first stage of the Centering ADMM updates the iterate so that it approaches … Read more

Polyhedral approximations of the semidefinite cone and their application

We develop techniques to construct a series of sparse polyhedral approximations of the semidefinite cone. Motivated by the semidefinite (SD) bases proposed by Tanaka and Yoshise (2018), we propose a simple expansion of SD bases so as to keep the sparsity of the matrices composing it. We prove that the polyhedral approximation using our expanded … Read more

LP-based Tractable Subcones of the Semidefinite Plus Nonnegative Cone

The authors in a previous paper devised certain subcones of the semidefinite plus nonnegative cone and showed that satisfaction of the requirements for membership of those subcones can be detected by solving linear optimization problems (LPs) with $O(n)$ variables and $O(n^2)$ constraints. They also devised LP-based algorithms for testing copositivity using the subcones. In this … Read more

An LP-based Algorithm to Test Copositivity

A symmetric matrix is called copositive if it generates a quadratic form taking no negative values over the nonnegative orthant, and the linear optimization problem over the set of copositive matrices is called the copositive programming problem. Recently, many studies have been done on the copositive programming problem (see, for example, \cite{aDUR10, aBOMZE12}). Among others, … Read more

A Primal Barrier Function Phase I Algorithm for Nonsymmetric Conic Optimization Problems

We call a positive semidefinite matrix whose elements are nonnegative a doubly nonnegative matrix, and the set of those matrices the doubly nonnegative cone (DNN cone). The DNN cone is not symmetric but can be represented as the projection of a symmetric cone embedded in a higher dimension. In \cite{aYOSHISE10}, the authors demonstrated the efficiency … Read more