Sum of Squares Basis Pursuit with Linear and Second Order Cone Programming

We devise a scheme for solving an iterative sequence of linear programs (LPs) or second order cone programs (SOCPs) to approximate the optimal value of any semidefinite program (SDP) or sum of squares (SOS) program. The first LP and SOCP-based bounds in the sequence come from the recent work of Ahmadi and Majumdar on diagonally … Read more

Semi-Online Scheduling on Two Uniform Machines with Known Optimum, Part I: Tight Lower Bounds

This problem is about to schedule a number of jobs of different lengths on two uniform machines with given speeds $1$ and $s \geq 1$, so that the overall completion time, i.e., the makespan, is earliest possible. We consider a semi-online variant (introduced for equal speeds) by Azar and Regev, where the jobs arrive one … Read more

Semi-Online Scheduling on Two Uniform Machines with Known Optimum, Part II: Tight Upper Bounds

We consider a semi-online version of the problem of scheduling a sequence of jobs of different lengths on two uniform machines with given speeds $1$ and $s$. Jobs are revealed one by one (the assignment of a job has to be done before the next job is revealed), and the objective is to minimize the … Read more

Fully Polynomial Time hBcApproximation Schemes for Continuous Stochastic Convex Dynamic Programs

We develop fully polynomial time $(\Sigma,\Pi)$-approximation schemes for stochastic dynamic programs with continuous state and action spaces, when the single-period cost functions are convex Lipschitz-continuous functions that are accessed via value oracle calls. That is, for every given additive error parameter $\Sigma>0$ and multiplicative error factor $\Pi=1+\epsilon>1$, the scheme returns a feasible solution whose value … Read more

A MAX-CUT formulation of 0/1 programs

We consider the linear or quadratic 0/1 program \[P:\quad f^*=\min\{ c^Tx+x^TFx : \:A\,x =\b;\:x\in\{0,1\}^n\},\] for some vectors $c\in R^n$, $b\in Z^m$, some matrix $A\in Z^{m\times n}$ and some real symmetric matrix $F\in R^{n\times n}$. We show that $P$ can be formulated as a MAX-CUT problem whose quadratic form criterion is explicit from the data of … Read more

Search-Enhanced Instantaneous Frequency Detection Algorithm: A Preliminary Design

This paper presents a method developed for finding sinusoidal components within a nonlinear non-stationary time-series data using Genetic Algorithm (GA) (a global optimization technique). It is called Search-Enhanced Instantaneous Frequency Detection (SEIFD) algorithm. The GA adaptively define the configuration of the components by simulating the solution finding process as a series of genetic evolutions. The … Read more

New Improved Penalty Methods for Sparse Reconstruction Based on Difference of Two Norms

In this paper, we further establish two types of DC (Difference of Convex functions) programming for $l_0$ sparse reconstruction. Our DC objective functions are specified to the difference of two norms. One is the difference of $l_1$ and $l_{\sigma_q}$ norms (DC $l_1$-$l_{\sigma_q}$ for short) where $l_{\sigma_q}$ is the $l_1$ norm of the $q$-term ($q\geq1$) best … Read more

New Semidefinite Programming Relaxations for the Linear Ordering and the Traveling Salesman Problem

In 2004 Newman suggested a semidefinite programming relaxation for the Linear Ordering Problem (LOP) that is related to the semidefinite program used in the Goemans-Williamson algorithm to approximate the Max Cut problem. Her model is based on the observation that linear orderings can be fully described by a series of cuts. Newman shows that her … Read more

On the Adaptivity Gap in Two-stage Robust Linear Optimization under Uncertain Constraints

In this paper, we study the performance of static solutions in two-stage adjustable robust packing linear optimization problem with uncertain constraint coefficients. Such problems arise in many important applications such as revenue management and resource allocation problems where demand requests have uncertain resource requirements. The goal is to find a two-stage solution that maximizes the … Read more

Approximating the Minimum Hub Cover Problem on Planar Graphs

We study an approximation algorithm with a performance guarantee to solve a new NP-hard optimization problem on planar graphs. The problem, which is referred to as the minimum hub cover problem, has recently been introduced to the literature to improve query processing over large graph databases. Planar graphs also arise in various graph query processing … Read more