Randomized heuristics for the regenerator location problem

Telecommunication systems make use of optical signals to transmit information. The strength of a signal in an optical network deteriorates and loses power as it gets farther from the source, mainly due to attenuation. Therefore, to enable the signal to arrive at its intended destination with good quality, it is necessary to regenerate it periodically … Read more

A biased random-key genetic algorithm for road congestion minimization

One of the main goals in transportation planning is to achieve solutions for two classical problems, the traffic assignment and toll pricing problems. The traffic assignment problem aims to minimize total travel delay among all travelers. Based on data derived from the first problem, the toll pricing problem determines the set of tolls and corresponding … Read more

A parallel multi-population biased random-key genetic algorithm for a container loading problem

This paper presents a multi-population biased random-key genetic algorithm (BRKGA) for the Single Container Loading Problem (CLP) where several rectangular boxes of different sizes are loaded into a single rectangular container. The approach uses a maximal-space representation to manage the free spaces in the container. The proposed algorithm hybridizes a novel placement procedure with a … Read more

A biased random-key genetic algorithm for routing and wavelength assignment

The problem of routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks consists in routing a set of lightpaths and assigning a wavelength to each of them, such that lightpaths whose routes share a common fiber are assigned different wavelengths. This problem was shown to be NP-hard when the objective is to … Read more

Path-relinking intensification methods for stochastic local search algorithms

Path-relinking is major enhancement to heuristic search methods for solving combinatorial optimization problems, leading to significant improvements in both solution quality and running times. We review its fundamentals and implementation strategies, as well as advanced hybridizations with more elaborate metaheuristic schemes such as genetic algorithms and scatter search. Numerical examples are discussed and algorithms compared … Read more

Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms

Run time distributions or time-to-target plots are very useful tools to characterize the running times of stochastic algorithms for combinatorial optimization. We further explore run time distributions and describe a new tool to compare two algorithms based on stochastic local search. For the case where the running times of both algorithms fit exponential distributions, we … Read more

Automatic tuning of GRASP with path-relinking heuristics with a biased random-key genetic algorithm

GRASP with path-relinking (GRASP+PR) is a metaheuristic for finding optimal or near-optimal solutions of combinatorial optimization problems. This paper proposes a new automatic parameter tuning procedure for GRASP+PR heuristics based on a biased random-key genetic algorithm (BRKGA). Given a GRASP+PR heuristic with N input parameters, the tuning procedure makes use of a BRKGA in a … Read more

The Balanced Academic Curriculum Problem Revisited

The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching terms satisfying prerequisites and balancing the credit course load within each term. The BACP is part of the CSPLib with three benchmark instances, but its formulation is simpler than the problem solved in practice by the universities. In this article, we introduce a … Read more

Biased random-key genetic algorithms for combinatorial optimization

Random-key genetic algorithms were introduced by Bean (1994) for solving sequencing problems in combinatorial optimization. Since then, they have been extended to handle a wide class of combinatorial optimization problems. This paper presents a tutorial on the implementation and use of biased random-key genetic algorithms for solving combinatorial optimization problems. Biased random-key genetic algorithms are … Read more

GRASP with path relinking heuristics for the antibandwidth problem

This paper proposes a linear integer programming formulation and several heuristics based on GRASP and path relinking for the antibandwidth problem. In the antibandwidth problem, one is given an undirected graph with N nodes and must label the nodes in a way that each node receives a unique label from the set {1, 2, …, … Read more