Tight bounds on the maximal perimeter of convex equilateral small polygons

A small polygon is a polygon of unit diameter. The maximal perimeter of a convex equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 4$. In this paper, we construct a family of convex equilateral small $n$-gons, $n=2^s$ and $s \ge 4$, and show that their perimeters are within $\pi^4/n^4 + O(1/n^5)$ … Read more

The Stochastic Pseudo-Star Degree Centrality Problem

We introduce the stochastic pseudo-star degree centrality problem, which focuses on a novel probabilistic group-based centrality metric. The goal is to identify a feasible induced pseudo-star, which is defined as a collection of nodes forming a star network with a certain probability, such that it maximizes the sum of the individual probabilities of unique assignments … Read more

Algorithms for the Clique Problem with Multiple-Choice Constraints under a Series-Parallel Dependency Graph

The clique problem with multiple-choice constraints (CPMC), i.e. the problem of finding a k-clique in a k-partite graph with known partition, occurs as a substructure in many real-world applications, in particular scheduling and railway timetabling. Although CPMC is NP-complete in general, it is known to be solvable in polynomial time when the so-called dependency graph … Read more

An order aggregation and scheduling problem for meal delivery

We address a single-machine scheduling problem motivated by a last-mile-delivery setting for a food company. Customers place orders, each characterized by a delivery point (customer location) and an ideal delivery time. An order is considered on time if it is delivered to the customer within a time window given by the ideal delivery time ± … Read more

Beyond Symmetry: Best Submatrix Selection for the Sparse Truncated SVD

Truncated singular value decomposition (SVD), also known as the best low-rank matrix approximation, has been successfully applied to many domains such as biology, healthcare, and others, where high-dimensional datasets are prevalent. To enhance the interpretability of the truncated SVD, sparse SVD (SSVD) is introduced to select a few rows and columns of the original matrix … Read more

Total Coloring and Total Matching: Polyhedra and Facets

A total coloring of a graph G = (V, E) is an assignment of colors to vertices and edges such that neither two adjacent vertices nor two incident edges get the same color, and, for each edge, the end-points and the edge itself receive a different color. Any valid total coloring induces a partition of … Read more

A Separation Algorithm for the Simple Plant Location Problem

The Simple Plant Location Problem (SPLP) is a well-known NP-hard optimisation problem with applications in logistics. Although many families of facet-defining inequalities are known for the associated polyhedron, very little work has been done on separation algorithms. We present the first ever polynomial-time separation algorithm for the SPLP that separates exactly over an exponentially large … Read more

The vehicle allocation problem: alternative formulation and branch-and-price method

The Vehicle Allocation Problem (VAP) consists of repositioning empty vehicles across a set of terminals over a given planning horizon so as to maximize the profits generated from serving demand for transportation of goods between pair of terminals. This problem has been classically modeled using an extended space-time network which captures the staging of the … Read more

A MILP Approach to DRAM Access Worst-Case Analysis

The Dynamic Random Access Memory (DRAM) is among the major points of contention in multi-core systems. We consider a challenging optimization problem arising in worst-case performance analysis of systems architectures: computing the worst-case delay (WCD) experienced when accessing the DRAM due to the interference of contending requests. The WCD is a crucial input for micro-architectural … Read more

On the generalized $\vartheta$-number and related problems for highly symmetric graphs

This paper is an in-depth analysis of the generalized $\vartheta$-number of a graph. The generalized $\vartheta$-number, $\vartheta_k(G)$, serves as a bound for both the $k$-multichromatic number of a graph and the maximum $k$-colorable subgraph problem. We present various properties of $\vartheta_k(G)$, such as that the series $(\vartheta_k(G))_k$ is increasing and bounded above by the order … Read more