Deep Neural Network Structures Solving Variational Inequalities

We propose a novel theoretical framework to investigate deep neural networks using the formalism of proximal fixed point methods for solving variational inequalities. We first show that almost all activation functions used in neural networks are actually proximity operators. This leads to an algorithmic model alternating firmly nonexpansive and linear operators. We derive new results … Read more

Conditional Extragradient Algorithms for Solving Constrained Variational Inequalities

In this paper, we generalize the classical extragradient algorithm for solving variational inequality problems by utilizing non-null normal vectors of the feasible set. In particular, conceptual algorithms are proposed with two different linesearches. We then establish convergence results for these algorithms under mild assumptions. Our study suggests that non-null normal vectors may significantly improve convergence … Read more

Weighted LCPs and interior point systems for copositive linear transformations on Euclidean Jordan algebras

In the setting of a Euclidean Jordan algebra V with symmetric cone V_+, corresponding to a linear transformation M, a `weight vector’ w in V_+, and a q in V, we consider the weighted linear complementarity problem wLCP(M,w,q) and (when w is in the interior of V_+) the interior point system IPS(M,w,q). When M is … Read more

A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem

The plain Newton-min algorithm for solving the linear complementarity problem (LCP) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as an instance of the plain semismooth Newton method on the equational version min(x,Mx+q) = 0 of the problem. This algorithm converges for any q when M is an M-matrix, but not when it … Read more

Golden Ratio Algorithms for Variational Inequalities

The paper presents a fully explicit algorithm for monotone variational inequalities. The method uses variable stepsizes that are computed using two previous iterates as an approximation of the local Lipschitz constant without running a linesearch. Thus, each iteration of the method requires only one evaluation of a monotone operator $F$ and a proximal mapping $g$. … Read more

A Special Complementarity Function Revisited

Recently, a local framework of Newton-type methods for constrained systems of equations has been developed which, applied to the solution of Karush-KuhnTucker (KKT) systems, enables local quadratic convergence under conditions that allow nonisolated and degenerate KKT points. This result is based on a reformulation of the KKT conditions as a constrained piecewise smooth system of … Read more

On Integer and MPCC Representability of Affine Sparsity

In addition to sparsity, practitioners of statistics and machine learning often wish to promote additional structures in their variable selection process to incorporate prior knowledge. Borrowing the modeling power of linear systems with binary variables, many of such structures can be faithfully modeled as so-called affine sparsity constraints (ASC). In this note we study conditions … Read more

Local attractors of newton-type methods for constrained equations and complementarity problems with nonisolated solutions

For constrained equations with nonisolated solutions, we show that if the equation mapping is 2-regular at a given solution with respect to a direction in the null space of the Jacobian, and this direction is interior feasible, then there is an associated domain of starting points from which a family of Newton-type methods is well-de ned … Read more

Numerically tractable optimistic bilevel problems

We consider fully convex lower level standard optimistic bilevel problems. We show that this class of mathematical programs is sufficiently broad to encompass significant real-world applications. We establish that the critical points of a relaxation of the original problem correspond to the equilibria of a suitably defined generalized Nash equilibrium problem. The latter game is … Read more

Complementarity-Based Nonlinear Programming Techniques for Optimal Mixing in Gas Networks

We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for equivalent complementarity-based reformulations. Based on recent results for remodeling piecewise affine constraints using an inverse parametric quadratic programming approach, we … Read more