Parallel Multi-Block ADMM with o(1/k) Convergence

This paper introduces a parallel and distributed extension to the alternating direction method of multipliers (ADMM). The algorithm decomposes the original problem into N smaller subproblems and solves them in parallel at each iteration. This Jacobian-type algorithm is well suited for distributed computing and is particularly attractive for solving certain large-scale problems. This paper introduces … Read more

Accelerated Schemes For A Class of Variational Inequalities

We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic VIs, the developed AMP method computes … Read more

A Family of Subgradient-Based Methods for Convex Optimization Problems in a Unifying Framework

We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objective function is non-smooth, smooth, have composite/saddle structure, or are given by an inexact oracle model. We unified the way of constructing the subproblems which … Read more

Forward-backward truncated Newton methods for convex composite optimization

This paper proposes two proximal Newton-CG methods for convex nonsmooth optimization problems in composite form. The algorithms are based on a a reformulation of the original nonsmooth problem as the unconstrained minimization of a continuously differentiable function, namely the forward-backward envelope (FBE). The first algorithm is based on a standard line search strategy, whereas the … Read more

Joint Variable Selection for Data Envelopment Analysis via Group Sparsity

This study develops a data-driven group variable selection method for data envelopment analysis (DEA), a non-parametric linear programming approach to the estimation of production frontiers. The proposed method extends the group Lasso (least absolute shrinkage and selection operator) designed for variable selection on (often predefined) groups of variables in linear regression models to DEA models. … Read more

An Accelerated Linearized Alternating Direction Method of Multipliers

We present a novel framework, namely AADMM, for acceleration of linearized alternating direction method of multipliers (ADMM). The basic idea of AADMM is to incorporate a multi-step acceleration scheme into linearized ADMM. We demonstrate that for solving a class of convex composite optimization with linear constraints, the rate of convergence of AADMM is better than … Read more

Optimal subgradient algorithms with application to large-scale linear inverse problems

This study addresses some algorithms for solving structured unconstrained convex optimization problems using first-order information where the underlying function includes high-dimensional data. The primary aim is to develop an implementable algorithmic framework for solving problems with multi-term composite objective functions involving linear mappings using the optimal subgradient algorithm, OSGA, proposed by {\sc Neumaier} in \cite{NeuO}. … Read more

String-Averaging Expectation-Maximization for Maximum Likelihood Estimation in Emission Tomography

We study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called String-Averaging Expectation-Maximization (SAEM). In the String-Averaging algorithmic regime, the index set of all underlying equations is split into subsets, called “strings,” and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points … Read more

OSGA: A fast subgradient algorithm with optimal complexity

This paper presents an algorithm for approximately minimizing a convex function in simple, not necessarily bounded convex domains, assuming only that function values and subgradients are available. No global information about the objective function is needed apart from a strong convexity parameter (which can be put to zero if only convexity is known). The worst … Read more

Feasibility-Seeking and Superiorization Algorithms Applied to Inverse Treatment Planning in Radiation Therapy

We apply the recently proposed superiorization methodology (SM) to the inverse planning problem in radiation therapy. The inverse planning problem is represented here as a constrained minimization problem of the total variation (TV) of the intensity vector over a large system of linear two-sided inequalities. The SM can be viewed conceptually as lying between feasibility-seeking … Read more