A globally and R-linearly convergent hybrid HS and PRP method and its inexact version with applications

A hybrid HS and PRP type conjugate gradient method for smooth optimization is presented, which reduces to the classical RPR or HS method if exact linear search is used and converges globally and R-linearly for nonconvex functions with an inexact backtracking line search under standard assumption. An inexact version of the proposed method which admits … Read more

A First-Order Smoothing Technique for a Class of Large-Scale Linear Programs

We study a class of linear programming (LP) problems motivated by large-scale machine learning applications. After reformulating the LP as a convex nonsmooth problem, we apply Nesterov’s primal-dual smoothing technique. It turns out that the iteration complexity of the smoothing technique depends on a parameter $\th$ that arises because we need to bound the originally … Read more

New optimality conditions for the semivectorial bilevel optimization problem

The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed rst-order necessary optimality conditions are then derived in … Read more

Sensitivity analysis for two-level value functions with applications to bilevel programming

This paper contributes to a deeper understanding of the link between a now conventional framework in hierarchical optimization spread under the name of the optimistic bilevel problem and its initial more dicult formulation that we call here the original optimistic bilevel optimization problem. It follows from this research that, although the process of deriving necessary … Read more

An extension of the elimination method for a sparse SOS polynomial

We propose a method to reduce the sizes of SDP relaxation problems for a given polynomial optimization problem (POP). This method is an extension of the elimination method for a sparse SOS polynomial in [Kojima et al., Mathematical Programming] and exploits sparsity of polynomials involved in a given POP. In addition, we show that this … Read more

Optimization problems with value function objectives

The family of optimization problems with value function objectives includes the minmax programming problem and the bilevel optimization problem. In this paper, we derive necessary optimality conditions for this class of problems. The main focus is on the case where the functions involved are nonsmooth and the constraints are the very general operator constraints. Citation … Read more

Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a uniform approach

This paper takes a uniform look at the customized applications of proximal point algorithm (PPA) to two classes of problems: the linearly constrained convex minimization problem with a generic or separable objective function and a saddle-point problem. We model these two classes of problems uniformly by a mixed variational inequality, and show how PPA with … Read more

A SIMPLE APPROACH TO OPTIMALITY CONDITIONS IN MINMAX PROGRAMMING

Considering the minmax programming problem, lower and upper subdi erential optimality conditions, in the sense of Mordukhovich, are derived. The approach here, mainly based on the nonsmooth dual objects of Mordukhovich, is completely di erent from that of most of the previous works where generalizations of the alternative theorem of Farkas have been applied. The results obtained … Read more

Subdifferential of the conjugate function in general Banach spaces

We give explicit formulas for the subdifferential set of the conjugate of non necessarily convex functions defined on general Banach spaces. Even if such a subdifferential mapping takes its values in the bidual space, we show that up to a weak** closure operation it is still described by using only elements of the initial space … Read more

Partial Smoothness,Tilt Stability, and Generalized Hessians

We compare two recent variational-analytic approaches to second-order conditions and sensitivity analysis for nonsmooth optimization. We describe a broad setting where computing the generalized Hessian of Mordukhovich is easy. In this setting, the idea of tilt stability introduced by Poliquin and Rockafellar is equivalent to a classical smooth second-order condition. Article Download View Partial Smoothness,Tilt … Read more