A Three-Operator Splitting Scheme and its Optimization Applications

Operator splitting schemes have been successfully used in computational sciences to reduce complex problems into a series of simpler subproblems. Since 1950s, these schemes have been widely used to solve problems in PDE and control. Recently, large-scale optimization problems in machine learning, signal processing, and imaging have created a resurgence of interest in operator-splitting based … Read more

Inexact Proximal Point Methods for Quasiconvex Minimization on Hadamard Manifolds

In this paper we present two inexact proximal point algorithms to solve minimization problems for quasiconvex objective functions on Hadamard manifolds. We prove that under natural assumptions the sequence generated by the algorithms are well defined and converge to critical points of the problem. We also present an application of the method to demand theory … Read more

Solving disjunctive optimization problems by generalized semi-infinite optimization techniques

We describe a new possibility to model disjunctive optimization problems as generalized semi-infinite programs. In contrast to existing methods, for our approach neither a conjunctive nor a disjunctive normal form is expected. Applying existing lower level reformulations for the corresponding semi-infinite program we derive conjunctive nonlinear problems without any logical expressions, which can be locally … Read more

Optimality and complexity for constrained optimization problems with nonconvex regularization

In this paper, we consider a class of constrained optimization problems where the feasible set is a general closed convex set and the objective function has a nonsmooth, nonconvex regularizer. Such regularizer includes widely used SCAD, MCP, logistic, fraction, hard thresholding and non-Lipschitz $L_p$ penalties as special cases. Using the theory of the generalized directional … Read more

Nonsmooth Methods for Control Design with Integral Quadratic Constraints

We develop an optimization technique to compute local solutions to synthesis problems subject to integral quadratic constraints (IQCs). We use the fact that IQCs may be transformed into semi-infinite maximum eigenvalue constraints over the frequency axis and approach them via nonsmooth optimization methods. We develop a suitable spectral bundle method and prove its convergence in … Read more

Nonlinear Metric Subregularity

In this article, we investigate nonlinear metric subregularity properties of set-valued mappings between general metric or Banach spaces. We demonstrate that these properties can be treated in the framework of the theory of (linear) error bounds for extended real-valued functions of two variables developed in A. Y. Kruger, Error bounds and metric subregularity, Optimization 64, … Read more

A dynamic approach to a proximal-Newton method for monotone inclusions in Hilbert spaces, with complexity $\bigo(1/n^2)$

In a Hilbert setting, we introduce a new dynamic system and associated algorithms aimed at solving by rapid methods, monotone inclusions. Given a maximal monotone operator $A$, the evolution is governed by the time dependent operator $I -(I + \lambda(t) {A})^{-1}$, where, in the resolvent, the positive control parameter $\lambda(t)$ tends to infinity as $t … Read more

The Cyclic Block Conditional Gradient Method for Convex Optimization Problems

In this paper we study the convex problem of optimizing the sum of a smooth function and a compactly supported non-smooth term with a specific separable form. We analyze the block version of the generalized conditional gradient method when the blocks are chosen in a cyclic order. A global sublinear rate of convergence is established … Read more

A corrected semi-proximal ADMM for multi-block convex optimization and its application to DNN-SDPs

In this paper we propose a corrected semi-proximal ADMM (alternating direction method of multipliers) for the general $p$-block $(p\!\ge 3)$ convex optimization problems with linear constraints, aiming to resolve the dilemma that almost all the existing modified versions of the directly extended ADMM, although with convergent guarantee, often perform substantially worse than the directly extended … Read more

Metric subregularity of composition set-valued mappings with applications to fixed point theory

In this paper we underline the importance of the parametric subregularity property of set-valued mappings, defined with respect to fixed sets. We show that this property appears naturally for some very simple mappings which play an important role in the theory of metric regularity. We prove a result concerning the preservation of metric subregularity at … Read more