A new customized proximal point algorithm for linearly constrained convex optimization

In this paper, we propose a new customized proximal point algorithm for linearly constrained convex optimization problem, and further use it to solve the separable convex optimization problem with linear constraints. Which is different to the existing customized proximal point algorithms, the proposed algorithm does not involve any relaxation step but still ensure the convergence. … Read more

Accelerated first-order methods for large-scale convex minimization

This paper discusses several (sub)gradient methods attaining the optimal complexity for smooth problems with Lipschitz continuous gradients, nonsmooth problems with bounded variation of subgradients, weakly smooth problems with H\”older continuous gradients. The proposed schemes are optimal for smooth strongly convex problems with Lipschitz continuous gradients and optimal up to a logarithmic factor for nonsmooth problems … Read more

An optimal first order method based on optimal quadratic averaging

In a recent paper, Bubeck, Lee, and Singh introduced a new first order method for minimizing smooth strongly convex functions. Their geometric descent algorithm, largely inspired by the ellipsoid method, enjoys the optimal linear rate of convergence. Motivated by their work, we propose a close variant that iteratively maintains a quadratic global under-estimator of the … Read more

Pessimistic bilevel linear optimization

In this paper, we investigate the pessimistic bilevel linear optimization problem (PBLOP). Based on the lower level optimal value function and duality, the PBLOP can be transformed to a single-level while nonconvex and nonsmooth optimization problem. By use of linear optimization duality, we obtain a tractable and equivalent transformation and propose algorithms for computing global … Read more

On the Grassmann condition number

We give new insight into the Grassmann condition of the conic feasibility problem \[ x \in L \cap K \setminus\{0\}. \] Here $K\subseteq V$ is a regular convex cone and $L\subseteq V$ is a linear subspace of the finite dimensional Euclidean vector space $V$. The Grassmann condition of this problem is the reciprocal of the … Read more

Algorithms for stochastic optimization with expectation constraints

This paper considers the problem of minimizing an expectation function over a closed convex set, coupled with an expectation constraint on either decision variables or problem parameters. We first present a new stochastic approximation (SA) type algorithm, namely the cooperative SA (CSA), to handle problems with the expectation constraint on devision variables. We show that … Read more

Computation of Graphical Derivative for a Class of Normal Cone Mappings under a Very Weak Condition

Let $\Gamma:=\{x\in \R^n\, |\, q(x)\in\Theta\},$ where $q: \R^n\rightarrow\R^m$ is a twice continuously differentiable mapping, and $\Theta$ is a nonempty polyhedral convex set in $\R^m.$ In this paper, we first establish a formula for exactly computing the graphical derivative of the normal cone mapping $N_\Gamma:\R^n\rightrightarrows\R^n,$ $x\mapsto N_\Gamma(x),$ under the condition that $M_q(x):=q(x)-\Theta$ is metrically subregular at … Read more

Semi-Smooth Second-order Type Methods for Composite Convex Programs

The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: i) Many well-known operator splitting methods, such as forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS), actually define a possibly semi-smooth and monotone fixed-point mapping; ii) The optimal solutions … Read more

Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction

Purpose: The development of iterative image reconstruction algorithms for cone-beam computed tomography (CBCT) remains an active and important research area. Even with hardware acceleration, the overwhelming majority of the available 3D iterative algorithms that implement nonsmooth regularizers remain computationally burdensome and have not been translated for routine use in time-sensitive applications such as image-guided radiation … Read more

Tight global linear convergence rate bounds for operator splitting methods

In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding … Read more