Quadratic Optimization with Switching Variables: The Convex Hull for n=2
We consider quadratic optimization in variables (x,y), 0
We consider quadratic optimization in variables (x,y), 0
While semidefinite programming (SDP) problems are polynomially solvable in theory, it is often difficult to solve large SDP instances in practice. One technique to address this issue is to relax the global positive-semidefiniteness (PSD) constraint and only enforce PSD-ness on smaller k times k principal submatrices — we call this the sparse SDP relaxation. Surprisingly, … Read more
Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization problems well-known to be NP-hard in general. In this paper we study sufficient conditions for a convex hull result that immediately implies that the standard semidefinite program (SDP) relaxation of a QCQP is tight. We begin by outlining a general framework for proving such … Read more
We decompose the copositive cone $\copos{n}$ into a disjoint union of a finite number of open subsets $S_{\cal E}$ of algebraic sets $Z_{\cal E}$. Each set $S_{\cal E}$ consists of interiors of faces of $\copos{n}$. On each irreducible component of $Z_{\cal E}$ these faces generically have the same dimension. Each algebraic set $Z_{\cal E}$ is … Read more
The problem of finding global minima of nonlinear discrete functions arises in many fields of practical matters. In recent years, methods based on discrete filled functions become popular as ways of solving these sort of problems. However, they rely on the steepest descent method for local searches. Here we present an approach that does not … Read more
A major difficulty in optimization with nonconvex constraints is to find feasible solutions. As simple examples show, the alphaBB-algorithm for single-objective optimization may fail to compute feasible solutions even though this algorithm is a popular method in global optimization. In this work, we introduce a filtering approach motivated by a multiobjective reformulation of the constrained … Read more
We investigate the unconstrained global optimization of functions with low effective dimensionality, that are constant along certain (unknown) linear subspaces. Extending the technique of random subspace embeddings in [Wang et al., Bayesian optimization in a billion dimensions via random embeddings. JAIR, 55(1): 361–387, 2016], we study a generic Random Embeddings for Global Optimization (REGO) framework … Read more
In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization with \emph{non-Lipschitz-continuous} value functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient … Read more
We study the unequal circle-circle non-overlapping constraints, a form of reverse convex constraints that often arise in optimization models for cutting and packing applications. The feasible region induced by the intersection of circle-circle non-overlapping constraints is highly non-convex, and standard approaches to construct convex relaxations for spatial branch-and-bound global optimization of such models typically yield … Read more
An important aspect of optimization algorithms, for instance evolutionary algorithms, are termination criteria that measure the proximity of the found solution to the optimal solution set. A frequently used approach is the numerical verification of necessary optimality conditions such as the Karush-Kuhn-Tucker (KKT) conditions. In this paper, we present a proximity measure which characterizes the … Read more