On an open question about the complexity of a dynamic spectrum management problem

In this paper we discuss the complexity of a dynamic spectrum management problem within a multi-user communication system with K users and N available tones. In this problem a common utility function is optimized. In particular, so called min-rate, harmonic mean and geometric mean utility functions are considered. The complexity of the optimization problems with … Read more

Convergence analysis for Lasserre’s measure–based hierarchy of upper bounds for polynomial optimization

We consider the problem of minimizing a continuous function f over a compact set K. We analyze a hierarchy of upper bounds proposed by Lasserre in [SIAM J. Optim. 21(3) (2011), pp. 864-􀀀885], obtained by searching for an optimal probability density function h on K which is a sum of squares of polynomials, so that … Read more

On proximal subgradient splitting method for minimizing the sum of two nonsmooth convex functions

In this paper we present a variant of the proximal forward-backward splitting method for solving nonsmooth optimization problems in Hilbert spaces, when the objective function is the sum of two nondifferentiable convex functions. The proposed iteration, which will be call the Proximal Subgradient Splitting Method, extends the classical projected subgradient iteration for important classes of … Read more

Convex hull of two quadratic or a conic quadratic and a quadratic inequality

In this paper we consider an aggregation technique introduced by Yildiran, 2009 to study the convex hull of regions defined by two quadratic or by a conic quadratic and a quadratic inequality. Yildiran shows how to characterize the convex hull of open sets defined by two strict quadratic inequalities using Linear Matrix Inequalities (LMI). We … Read more

On the Global Optimality for Linear Constrained Rank Minimization Problem

The rank minimization with linear equality constraints has two closely related models, the low rank approximation model, that is to find the best rank-k approximation of a matrix satisfying the linear constraints, and its corresponding factorization model. The latter one is an unconstrained nonlinear least squares problem and hence enjoys a few fast first-order methods … Read more

Hedging Problem

For index-based hedging design, the scatter plot of the hedging contract losses versus the losses to be hedged is generally used to visualize and quantify basis risk. While studying this scatter plot, which does not cluster along the diagonal as desired, a “bundled loss” phenomenon is found. In a setting where both the hedging and … Read more

Higher Order Maximum Persistency and Comparison Theorems

We address combinatorial problems that can be formulated as minimization of a partially separable function of discrete variables (energy minimization in graphical models, weighted constraint satisfaction, pseudo-Boolean optimization, 0-1 polynomial programming). For polyhedral relaxations of such problems it is generally not true that variables integer in the relaxed solution will retain the same values in … Read more

Inexactness of SDP Relaxation and Valid Inequalities for Optimal Power Flow

It has been recently proven that the semidefinite programming (SDP) relaxation of the optimal power flow problem over radial networks is exact under technical conditions such as not including generation lower bounds or allowing load over-satisfaction. In this paper, we investigate the situation where generation lower bounds are present. We show that even for a … Read more

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced … Read more

Relative Entropy Relaxations for Signomial Optimization

Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain … Read more