Multiechelon Lot Sizing: New Complexities and Inequalities

We study a multiechelon supply chain model that consists of a production level and several transportation levels, where the demands can exist in the production echelon as well as any transportation echelons. With the presence of stationary production capacity and general cost functions, our model integrates production, inventory and transportation decisions and generalizes existing literature … Read more

The structure of the infinite models in integer programming

The infinite models in integer programming can be described as the convex hull of some points or as the intersection of half-spaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for finite dimensional corner polyhedra. One consequence is that nonnegative continuous functions suffice to … Read more

On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory–Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing … Read more

Path Cover and Path Pack Inequalities for the Capacitated Fixed-Charge Network Flow Problem

Capacitated fixed-charge network flows are used to model a variety of problems in telecommunication, facility location, production planning and supply chain management. In this paper, we investigate capacitated path substructures and derive strong and easy-to-compute path cover and path pack inequalities. These inequalities are based on an explicit characterization of the submodular inequalities through a … Read more

Lattice closures of polyhedra

Given $P\subset\R^n$, a mixed-integer set $P^I=P\cap (\Z^{t}\times\R^{n-t}$), and a $k$-tuple of $n$-dimensional integral vectors $(\pi_1, \ldots, \pi_k)$ where the last $n-t$ entries of each vector is zero, we consider the relaxation of $P^I$ obtained by taking the convex hull of points $x$ in $P$ for which $ \pi_1^Tx,\ldots,\pi^T_kx$ are integral. We then define the $k$-dimensional … Read more

Improved Handling of Uncertainty and Robustness in Set Covering Problems

This paper studies the emergency service facility location problem in an uncertain environment. The main focus is the integration of uncertainty regarding the covered area due to uncertain traveling times. Previous approaches only consider either probabilistic or fuzzy optimization to cope with uncertainty. However, in many real-world problems the required statistical parameters are not precisely … Read more

Improving Benders decomposition via a non-linear cut selection procedure

A non-linear lifting procedure is proposed to generate high density Benders cuts. The new denser cuts cover more master problem variables than traditional Benders cuts, shortening the required number of iterations to reach optimality, and speeding up the Benders decomposition algorithm. To lessen the intricacy stemmed from the non-linearity, a simple outer approximation lineariza- tion … Read more

Facets for Node-Capacitated Multicut Polytopes from Path-Block Cycles with Two Common Nodes

A path-block cycle is a graph that consists of several cycles that all intersect in a common subset of nodes. The associated path-block-cycle inequalities are valid, and sometimes facet-defining, inequalities for polytopes in connection with graph partitioning problems and corresponding multicut problems. Special cases of the inequalities were introduced by De Souza & Laurent (1995) … Read more

Integer Programming Formulations for Minimum Deficiency Interval Coloring

A proper edge-coloring of a given undirected graph with natural numbers identified with colors is an interval (or consecutive) coloring if the colors of edges incident to each vertex form an interval of consecutive integers. Not all graphs admit such an edge-coloring and the problem of deciding whether a graph is interval colorable is NP-complete. … Read more

Aggregation-based cutting-planes for packing and covering integer programs

In this paper, we study the strength of Chvatal-Gomory (CG) cuts and more generally aggregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained as follows: Given an IP formulation, we first generate a single implied inequality using aggregation of the original constraints, then obtain the integer hull of the set defined … Read more