A partitioning algorithm for the network loading problem

This paper proposes a Benders-like partitioning algorithm to solve the network loading problem. The effort of computing integer solutions is entirely left to a pure integer programming solver while valid inequalities are generated by solving standard nonlinear multicommodity flow problems. The method is compared to alternative approaches proposed in the literature and appears to be … Read more

Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more

The Flow Set with Partial Order

The flow set with partial order is a mixed-integer set described by a budget on total flow and a partial order on the arcs that may carry positive flow. This set is a common substructure of resource allocation and scheduling problems with precedence constraints and robust network flow problems under demand/capacity uncertainty. We give a … Read more

Separation Algorithms for 0-1 Knapsack Polytopes

Valid inequalities for 0-1 knapsack polytopes often prove useful when tackling hard 0-1 Linear Programming problems. To use such inequalities effectively, one needs separation algorithms for them, i.e., routines for detecting when they are violated. We show that the separation problems for the so-called extended cover and weight inequalities can be solved exactly in O(nb) … Read more

Some Relations Between Facets of Low- and High-Dimensional Group Problems

In this paper, we introduce an operation that creates families of facet-defining inequalities for high-dimensional infinite group problems using facet-defining inequalities of lower-dimensional group problems. We call this family sequential-merge inequalities because they are produced by applying two group cuts one after the other and because the resultant inequality depends on the order of the … Read more

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed Integer Programs

Two-stage stochastic mixed-integer programming (SMIP) problems with recourse are generally difficult to solve. This paper presents a first computational study of a disjunctive cutting plane method for stochastic mixed 0-1 programs that uses lift-and-project cuts based on the extensive form of the two-stage SMIP problem. An extension of the method based on where the data … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

MIR Closures of Polyhedral Sets

We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIR closure of a polyhedral set is equal to its split closure and the associated separation problem is NP-hard. We describe a mixed-integer programming (MIP) model with linear constraints and a non-linear objective for separating an arbitrary point from the MIR closure of a … Read more