On a class of stochastic programs with exponentially many scenarios

We consider a class of stochastic programs whose uncertain data has an exponential number of possible outcomes, where scenarios are affinely parametrized by the vertices of a tractable binary polytope. Under these conditions, we propose a novel formulation that introduces a modest number of additional variables and a class of inequalities that can be efficiently … Read more

Distributionally Robust Optimization Approaches for a Stochastic Mobile Facility Routing and Scheduling Problem

We study a mobile facility (MF) routing and scheduling problem in which probability distributions of the time-dependent demand for MF services is unknown. To address distributional ambiguity, we propose and analyze two distributionally robust MF routing and scheduling (DMFRS) models that seek to minimize the fixed cost of establishing the MF fleet and maximum expected … Read more

The SCIP Optimization Suite 7.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies … Read more

Distributionally Robust Chance-Constrained Programs with Right-Hand Side Uncertainty under Wasserstein Ambiguity

We consider exact deterministic mixed-integer programming (MIP) reformulations of distributionally robust chance-constrained programs (DR-CCP) with random right-hand sides over Wasserstein ambiguity sets. The existing MIP formulations are known to have weak continuous relaxation bounds, and, consequently, for hard instances with small radius, or with a large number of scenarios, the branch-and-bound based solution processes suffer … Read more

A mixed-integer linear programming approach for the T-row and the multi-bay facility layout problem

We introduce a new facility layout problem, the so-called T-Row Facility Layout Problem (TRFLP). The TRFLP consists of a set of one-dimensional departments with pairwise transport weights between them and two orthogonal rows which form a T such that departments in different rows cannot overlap. The aim is to find a non-overlapping assignment of the … Read more

A Classifier to Decide on the Linearization of Mixed-Integer Quadratic Problems in CPLEX

We translate the algorithmic question of whether to linearize convex Mixed-Integer Quadratic Programming problems (MIQPs) into a classification task, and use machine learning (ML) techniques to tackle it. We represent MIQPs and the linearization decision by careful target and feature engineering. Computational experiments and evaluation metrics are designed to further incorporate the optimization knowledge in … Read more

The two-echelon location-routing problem with time windows: Formulation, branch-and-price, and clustering

In this study, we consider the two-echelon location-routing problem with time windows (2E-LRPTW) to address the strategic and tactical decisions of the urban freight transportation. In the rst echelon, freights are delivered from city distribution centers (CDCs) to intermediate facilities, called satellites, in large batches. In the second echelon, goods are consolidated into smaller vehicles … Read more

Testing Copositivity via Mixed-Integer Linear Programming

We describe a simple method to test if a given matrix is copositive by solving a single mixed-integer linear programming (MILP) problem. This methodology requires no special coding to implement and takes advantage of the computational power of modern MILP solvers. Numerical experiments demonstrate that the method is robust and efficient. CitationDept. of Business Analytics, … Read more

Learning Optimal Classification Trees: Strong Max-Flow Formulations

We consider the problem of learning optimal binary classification trees. Literature on the topic has burgeoned in recent years, motivated both by the empirical suboptimality of heuristic approaches and the tremendous improvements in mixed-integer programming (MIP) technology. Yet, existing approaches from the literature do not leverage the power of MIP to its full extent. Indeed, … Read more

Evaluating on-demand warehousing via dynamic facility location models

On-demand warehousing platforms match companies with underutilized warehouse and distribution capabilities with customers who need extra space or distribution services. These new business models have unique advantages, in terms of reduced capacity and commitment granularity, but also have different cost structures compared to traditional ways of obtaining distribution capabilities. This research is the first quantitative … Read more