Mixed n-Step MIR Inequalities: Facets for the n-Mixing Set

Gunluk and Pochet [O. Gunluk, Y. Pochet: Mixing mixed integer inequalities. Mathematical Programming 90(2001) 429-457] proposed a procedure to mix mixed integer rounding (MIR) inequalities. The mixed MIR inequalities define the convex hull of the mixing set $\{(y^1,\ldots,y^m,v) \in Z^m \times R_+:\alpha_1 y^i + v \geq \b_i,i=1,\ldots,m\}$ and can also be used to generate valid … Read more

PuLP: A Linear Programming Toolkit for Python

This paper introduces the PuLP library, an open source package that allows mathematical programs to be described in the Python computer programming language. PuLP is a high-level modelling library that leverages the power of the Python language and allows the user to create programs using expressions that are natural to the Python language, avoiding special … Read more

Lattice-free sets, multi-branch split disjunctions, and mixed-integer programming

In this paper we study the relationship between valid inequalities for mixed-integer sets, lattice-free sets associated with these inequalities and the multi-branch split cuts introduced by Li and Richard (2008). By analyzing $n$-dimensional lattice-free sets, we prove that for every integer $n$ there exists a positive integer $t$ such that every facet-defining inequality of the … Read more

Algorithimic and Complexity Results for Cutting Planes Derived from Maximal Lattice-Free Convex Sets

We study a mixed integer linear program with $m$ integer variables and $k$ non-negative continuous variables in the form of the relaxation of the corner polyhedron that was introduced by Andersen, Louveaux, Weismantel and Wolsey [\emph{Inequalities from two rows of a simplex tableau}, Proc.\ IPCO 2007, LNCS, vol.~4513, Springer, pp.~1–15]. We describe the facets of … Read more

Solving Mixed Integer Bilinear Problems using MILP formulations

In this paper, we examine a mixed integer linear programming (MIP) reformulation for mixed integer bilinear problems where each bilinear term involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to … Read more

Computational Experiments with Cross and Crooked Cross Cuts

In a recent paper, Dash, Dey and Gunluk (2010) showed that many families of inequalities for the two-row continuous group relaxation and variants of this relaxation are cross cuts or crooked cross cuts, both of which generalize split cuts. Li and Richard (2008) recently studied t-branch split cuts for mixed-integer programs for integers t >= … Read more

Exact Approaches to Multi-Level Vertical Orderings

We present a semide nite programming (SDP) approach for the problem of ordering vertices of a layered graph such that the edges of the graph are drawn as vertical as possible. This Multi-Level Vertical Ordering (MLVO) problem is a quadratic ordering problem and conceptually related to the well-studied problem of Multi-Level Crossing Minimization (MLCM). In contrast … Read more

An algorithm for the separation of two-row cuts

We consider the question of finding deep cuts from a model constructed with two rows of a simplex tableau. To do that, we show how to reduce the complexity of setting up the polar of such model from a quadratic number of integer hull computations to a linear number of integer hull computations. Furthermore we … Read more

Designing AC Power Grids using Integer Linear Programming

Recent developments have drawn focus towards the efficient calculation of flows in AC power grids, which are difficult to solve systems of nonlinear equations. The common linearization approach leads to the well known and often used DC formulation, which has some major drawbacks. To overcome these drawbacks we revisit an alternative linearization of the AC … Read more

On n-step MIR and Partition Inequalities for Integer Knapsack and Single-node Capacitated Flow Sets

Pochet and Wolsey [Y. Pochet, L.A. Wolsey, Integer knapsack and flow covers with divisible coefficients: polyhedra, optimization and separation. Discrete Applied Mathematics 59(1995) 57-74] introduced partition inequalities for three substructures arising in various mixed integer programs, namely the integer knapsack set with nonnegative divisible/arbitrary coefficients and two forms of single-node capacitated flow set with divisible … Read more