A polyhedral study of the Network Pricing Problem with Connected Toll Arcs

Consider the problem that consists in maximizing the revenue generated by tolls set on a subset of arcs of a transportation network, and where origin-destination flows are assigned to shortest paths with respect to the sum of tolls and initial costs. In this work, we address the instance where toll arcs must be connected, as … Read more

Conic Mixed-Integer Rounding Cuts

A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These … Read more

The Flow Set with Partial Order

The flow set with partial order is a mixed-integer set described by a budget on total flow and a partial order on the arcs that may carry positive flow. This set is a common substructure of resource allocation and scheduling problems with precedence constraints and robust network flow problems under demand/capacity uncertainty. We give a … Read more

MIP-based heuristic for non-standard 3D-packing problems

This paper is the continuation of a previous work (Fasano 2004), dedicated to a MIP formulation for non-standard three-dimensional packing issues, with additional conditions. The Single Bin Packing problem (Basic Problem) is considered and its MIP formulation shortly surveyed, together with some possible extensions, including balancing, tetris-like items and non-standard domains. A MIP-based heuristic is … Read more

A MIP Approach for some Practical Packing Problems: Balancing Constraints and Tetris-like Items

This paper considers packing problems with balancing conditions and items consisting of clusters of parallelepipeds (mutually orthogonal, i.e. tetris-like items). This issue is quite frequent in space engineering and a real-world application deals with the Automated Transfer Vehicle project (funded by the European Space Agency), at present under development. A Mixed Integer Programming (MIP) approach … Read more

On the strength of cut-based inequalities for capacitated network design polyhedra

In this paper we study capacitated network design problems, differentiating directed, bidirected and undirected link capacity models. We complement existing polyhedral results for the three variants by new classes of facet-defining valid inequalities and unified lifting results. For this, we study the restriction of the problems to a cut of the network. First, we show … Read more

Some Relations Between Facets of Low- and High-Dimensional Group Problems

In this paper, we introduce an operation that creates families of facet-defining inequalities for high-dimensional infinite group problems using facet-defining inequalities of lower-dimensional group problems. We call this family sequential-merge inequalities because they are produced by applying two group cuts one after the other and because the resultant inequality depends on the order of the … Read more

Computations with Disjunctive Cuts for Two-Stage Stochastic Mixed Integer Programs

Two-stage stochastic mixed-integer programming (SMIP) problems with recourse are generally difficult to solve. This paper presents a first computational study of a disjunctive cutting plane method for stochastic mixed 0-1 programs that uses lift-and-project cuts based on the extensive form of the two-stage SMIP problem. An extension of the method based on where the data … Read more

An integer programming approach for linear programs with probabilistic constraints

Linear programs with joint probabilistic constraints (PCLP) are difficult to solve because the feasible region is not convex. We consider a special case of PCLP in which only the right-hand side is random and this random vector has a finite distribution. We give a mixed-integer programming formulation for this special case and study the relaxation … Read more

Optimizing Highway Transportation at the United States Postal Service

The United States Postal Service (USPS) delivers more than 200 billion items per year. Transporting these items in a timely and cost-efficient way is a key issue if USPS is to meet its service and financial goals. The Highway Corridor Analytic Program (HCAP) is a tool that aids transportation analysts in identifying cost saving opportunities … Read more