A Class Representative Model for Pure Parsimony Haplotyping

Parsimonious haplotype estimation from aligned Single Nucleotide Polymorphism (SNP) fragments consists of finding the minimum number of haplotypes necessary to explain a given set of genotypes. This problem is known to be NP-Hard. Here we describe a new integer linear-programming model to tackle this problem based on the concept of class representatives, already used for … Read more

Parallel Approximation, and Integer Programming Reformulation

We analyze two integer programming reformulations of the n-dimensional knapsack feasibility problem without assuming any structure on the weight vector $a.$ Both reformulations have a constraint matrix in which the columns form a reduced basis in the sense of Lenstra, Lenstra, and Lov\’asz. The nullspace reformulation of Aardal, Hurkens and Lenstra has n-1 variables, and … Read more

Mingling: Mixed-Integer Rounding with Bounds

Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This is not surprising as … Read more

Computational Experience with a Software Framework for Parallel Integer Programming

In this paper, we discuss the challenges that arise in parallelizing algorithms for solving mixed integer linear programs and introduce a software framework that aims to address these challenges. The framework was designed specifically with support for implementation of relaxation-based branch-and-bound algorithms in mind. Achieving efficiency for such algorithms is particularly challenging and involves a … Read more

Single Item Lot-Sizing with Nondecreasing Capacities

We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially … Read more

Algorithms to Separate {0,1/2}-Chvatal-Gomory Cuts

Chvatal-Gomory cuts are among the most well-known classes of cutting planes for general integer linear programs (ILPs). In case the constraint multipliers are either 0 or 1/2, such cuts are known as {0, 1/2}-cuts. It has been proven by Caprara and Fischetti (1996) that separation of {0, 1/2}-cuts is NP-hard. In this paper, we study … Read more

A polyhedral study of the Network Pricing Problem with Connected Toll Arcs

Consider the problem that consists in maximizing the revenue generated by tolls set on a subset of arcs of a transportation network, and where origin-destination flows are assigned to shortest paths with respect to the sum of tolls and initial costs. In this work, we address the instance where toll arcs must be connected, as … Read more

Conic Mixed-Integer Rounding Cuts

A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second-order conic sets. These … Read more

The Flow Set with Partial Order

The flow set with partial order is a mixed-integer set described by a budget on total flow and a partial order on the arcs that may carry positive flow. This set is a common substructure of resource allocation and scheduling problems with precedence constraints and robust network flow problems under demand/capacity uncertainty. We give a … Read more

MIP-based heuristic for non-standard 3D-packing problems

This paper is the continuation of a previous work (Fasano 2004), dedicated to a MIP formulation for non-standard three-dimensional packing issues, with additional conditions. The Single Bin Packing problem (Basic Problem) is considered and its MIP formulation shortly surveyed, together with some possible extensions, including balancing, tetris-like items and non-standard domains. A MIP-based heuristic is … Read more