Structured Pruning of Neural Networks for Constraints Learning

In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse applications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies … Read more

Sub-Exponential Lower Bounds for Branch-and-Bound with General Disjunctions via Interpolation

\(\) This paper investigates linear programming based branch-and-bound using general disjunctions, also known as stabbing planes, for solving integer programs. We derive the first sub-exponential lower bound (in the encoding length \(L\) of the integer program) for the size of a general branch-and-bound tree for a particular class of (compact) integer programs, namely \(2^{\Omega(L^{1/12 -\epsilon})}\) … Read more

Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks

Citation Ojha, R., Chen, W., Zhang, H., Khir, R., Erera, A. & Van Hentenryck, P. (2023). Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks. Article Download View Optimization-based Learning for Dynamic Load Planning in Trucking Service Networks

Shattering Inequalities for Learning Optimal Decision Trees

Recently, mixed-integer programming (MIP) techniques have been applied to learn optimal decision trees. Empirical research has shown that optimal trees typically have better out-of-sample performance than heuristic approaches such as CART. However, the underlying MIP formulations often suffer from weak linear programming (LP) relaxations. Many existing MIP approaches employ big-M constraints to ensure observations are … Read more

Recycling Valid Inequalities for Robust Combinatorial Optimization with Budget Uncertainty

Robust combinatorial optimization with budget uncertainty is one of the most popular approaches for integrating uncertainty into optimization problems. The existence of a compact reformulation for (mixed-integer) linear programs and positive complexity results give the impression that these problems are relatively easy to solve. However, the practical performance of the reformulation is quite poor when … Read more

Exploiting user-supplied Decompositions inside Heuristics

Numerous industrial fields, like supply chain management, face mixed-integer optimization problems on a regular basis. Such problems typically show a sparse structure and vary in size, as well as complexity. However, in order to satisfy customer demands, it is crucial to find good solutions to all such problems quickly. Current research often focuses on the … Read more

The set partitioning problem in a quantum context

The set partitioning problem and its decision variant (i.e., the exact cover problem) are combinatorial optimization problems that were historically crucial in the quantum optimization community. This problem is also employed in the main problem of the branch-and-price approach in many real-world optimization problems, including, but not limited to, redistricting and scheduling. Motivated by recent … Read more

Stability-Adjusted Cross-Validation for Sparse Linear Regression

Given a high-dimensional covariate matrix and a response vector, ridge-regularized sparse linear regression selects a subset of features that explains the relationship between covariates and the response in an interpretable manner. To select the sparsity and robustness of linear regressors, techniques like k-fold cross-validation are commonly used for hyperparameter tuning. However, cross-validation substantially increases the … Read more

Distributionally Risk-Receptive and Robust Multistage Stochastic Integer Programs and Interdiction Models

In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations … Read more