A generalized simplex method for integer problems given by verification oracles

We consider a linear problem over a finite set of integer vectors and assume that there is a verification oracle, which is an algorithm being able to verify whether a given vector optimizes a given linear function over the feasible set. Given an initial solution, the algorithm proposed in this paper finds an optimal solution … Read more

An inexact potential reduction method for linear programming

A class of interior point methods using inexact directions is analysed. The linear system arising in interior point methods for linear programming is reformulated such that the solution is less sensitive to perturbations in the right-hand side. For the new system an implementable condition is formulated that controls the relative error in the solution. Based … Read more

Creating Standard Load Profiles in Residential and Commercial Sectors in Germany for 2016, 2025 and 2040

Standard load profiles (SLPs) are used to calculate the natural gas demand of non-daily metered customers based on temperature forecasts. The most recent version of natural gas SLPs in Germany was published by the Federal Association of Energy and Water in June 2015. With the concept SigLinDE, a linearization of the old SLPs was carried … Read more

Implementation of Interior-point Methods for LP based on Krylov Subspace Iterative Solvers with Inner-iteration Preconditioning

We apply novel inner-iteration preconditioned Krylov subspace methods to the interior-point algorithm for linear programming (LP). Inner-iteration preconditioners recently proposed by Morikuni and Hayami enable us to overcome the severe ill-conditioning of linear equations solved in the final phase of interior-point iterations. The employed Krylov subspace methods do not suffer from rank-deficiency and therefore no … Read more

Tight global linear convergence rate bounds for operator splitting methods

In this paper we establish necessary and sufficient conditions for linear convergence of operator splitting methods for a general class of convex optimization problems where the associated fixed-point operator is averaged. We also provide a tight bound on the achievable convergence rate. Most existing results establishing linear convergence in such methods require restrictive assumptions regarding … Read more

On geometrical properties of preconditioners in IPMs for classes of block-angular problems

One of the most efficient interior-point methods for some classes of block-angular structured problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. In this work we show that the choice of a good preconditioner depends on geometrical properties of the constraints structure. … Read more

Benders Decomposition and Column-and-Row Generation for Solving Large-Scale Linear Programs with Column-Dependent-Rows

In a recent work, Muter et al. (2013a) identified and characterized a general class of linear programming (LP) problems – known as problems with column-dependent-rows (CDR-problems). These LPs feature two sets of constraints with mutually exclusive groups of variables in addition to a set of structural linking constraints, in which variables from both groups appear … Read more

Examples with Decreasing Largest Inscribed Ball for Deterministic Rescaling Algorithms

Recently, Pena and Soheili presented a deterministic rescaling perceptron algorithm and proved that it solves a feasible perceptron problem in $O(m^2n^2\log(\rho^{-1}))$ perceptron update steps, where $\rho$ is the radius of the largest inscribed ball. The original stochastic rescaling perceptron algorithm of Dunagan and Vempala is based on systematic increase of $\rho$, while the proof of … Read more

Strong Duality: Without Simplex and without theorems of alternatives

The simplex method has its own problems related to degenerate basic feasible solutions. While such solutions are infrequent, from a theoretical standpoint a proof of the strong duality theorem that uses the simplex method is not complete until it has taken a few extra steps. Further, for economists the duality theorem is extremely important whereas … Read more

A priori bounds on the condition numbers in interior-point methods

Interior-point methods are known to be sensitive to ill-conditioning and to scaling of the data. This paper presents new asymptotically sharp bounds on the condition numbers of the linear systems at each iteration of an interior-point method for solving linear or semidefinite programs and discusses a stopping test which leads to a problem-independent “a priori” … Read more