Finding a point in the relative interior of a polyhedron

A new initialization or `Phase I’ strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points — an all-pervasive assumption in interior point method theory that implies the existence of the central path … Read more

A Data-Driven Approach to Newsvendor Problems

We propose an approach to the classical newsvendor problem and its extensions subject to uncertain demand that: (a) works directly with data, i.e., combines historical data and optimization in a single framework, (b) yields robust solutions and incorporates risk preferences using one scalar parameter, rather than utility functions, (c) allows for tractable formulations, specifically, linear … Read more

A Simpler and Tighter Redundant Klee-Minty Construction

By introducing redundant Klee-Minty examples, we have previously shown that the central path can be bent along the edges of the Klee-Minty cubes, thus having $2^n-2$ sharp turns in dimension $n$. In those constructions the redundant hyperplanes were placed parallel with the facets active at the optimal solution. In this paper we present a simpler … Read more

A Warm-Start Approach for Large-Scale Stochastic Linear Programs

We describe a method of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree … Read more

Central path curvature and iteration-complexity for redundant Klee-Minty cubes

We consider a family of linear optimization problems over the n-dimensional Klee-Minty cube and show that the central path may visit all of its vertices in the same order as simplex methods do. This is achieved by carefully adding an exponential number of redundant constraints that forces the central path to take at least 2^n-2 … Read more

Polytopes and Arrangements : Diameter and Curvature

We introduce a continuous analogue of the Hirsch conjecture and a discrete analogue of the result of Dedieu, Malajovich and Shub. We prove a continuous analogue of the result of Holt and Klee, namely, we construct a family of polytopes which attain the conjectured order of the largest total curvature. Citation AdvOL-Report #2006/09 Advanced Optimization … Read more

A Path to the Arrow-Debreu Competitive Market Equilibrium

We present polynomial-time interior-point algorithms for solving the Fisher and Arrow-Debreu competitive market equilibrium problems with linear utilities and $n$ players. Both of them have the arithmetic operation complexity bound of $O(n^4\log(1/\epsilon))$ for computing an $\epsilon$-equilibrium solution. If the problem data are rational numbers and their bit-length is $L$, then the bound to generate an … Read more

Static-arbitrage bounds on the prices of basket options via linear programming

We show that the problem of computing sharp upper and lower static-arbitrage bounds on the price of a European basket option, given the prices of other similar options, can be cast as a linear program (LP). The LP formulations readily yield super-replicating (sub-replicating) strategies for the upper (lower) bound problem. The dual counterparts of the … Read more

Implementation of Warm-Start Strategies in Interior-Point Methods for Linear Programming in Fixed Dimension

We implement several warm-start strategies in interior-point methods for linear programming (LP). We study the situation in which both the original LP instance and the perturbed one have exactly the same dimensions. We consider different types of perturbations of data components of the original instance and different sizes of each type of perturbation. We modify … Read more

Existence of Equilibrium for Integer Allocation Problems

In this paper we show that if all agents are equipped with discrete concave production functions, then a feasible price allocation pair is a market equilibrium if and only if it solves a linear programming problem, similar to, but perhaps simpler than the one invoked in Yang (2001). Using this result, but assuming discrete concave … Read more