A Redundant Klee-Minty Construction with All the Redundant Constraints Touching the Feasible Region

By introducing some redundant Klee-Minty constructions, we have previously shown that the central path may visit every vertex of the Klee-Minty cube having $2^n-2$ “sharp” turns in dimension $n$. In all of the previous constructions, the maximum of the distances of the redundant constraints to the corresponding facets is an exponential number of the dimension … Read more

Limiting behavior and analyticity of weighted central paths in semidefinite programming

In this paper we analyze the limiting behavior of infeasible weighted central paths in semidefinite programming under the assumption that a strictly complementary solution exists. We show that the paths associated with the “square root” symmetrization of the weighted centrality condition are analytic functions of the barrier parameter $\mu$ even at $\mu=0$ if and only … Read more

An Information Geometric Approach to Polynomial-time Interior-point Algorithms: Complexity Bound via Curvature Integral

In this paper, we study polynomial-time interior-point algorithms in view of information geometry. Information geometry is a differential geometric framework which has been successfully applied to statistics, learning theory, signal processing etc. We consider information geometric structure for conic linear programs introduced by self-concordant barrier functions, and develop a precise iteration-complexity estimate of the polynomial-time … Read more

Block-diagonal semidefinite programming hierarchies for 0/1 programming

Lovasz and Schrijver, and later Lasserre, proposed hierarchies of semidefinite programming relaxations for general 0/1 linear programming problems. In this paper these two constructions are revisited and a new, block-diagonal hierarchy is proposed. It has the advantage of being computationally less costly while being at least as strong as the Lovasz-Schrijver hierarchy. It is applied … Read more

On semidefinite programming relaxations of the traveling salesman problem

We consider a new semidefinite programming (SDP) relaxation of the symmetric traveling salesman problem (TSP), obtained via an SDP relaxation of the more general quadratic assignment problem (QAP). We show that the new relaxation dominates the one in the paper: [D. Cvetkovic, M. Cangalovic and V. Kovacevic-Vucic. Semidefinite Programming Methods for the Symmetric Traveling Salesman … Read more

Multi-Standard Quadratic Optimization Problems

A Standard Quadratic Optimization Problem (StQP) consists of maximizing a (possibly indefinite) quadratic form over the standard simplex. Likewise, in a multi-StQP we have to maximize a (possibly indefinite) quadratic form over the cartesian product of several standard simplices (of possibly different dimensions). Two converging monotone interior point methods are established. Further, we prove an … Read more

Improved Approximation Bound for Quadratic Optimization Problems with Orthogonality Constraints

In this paper we consider approximation algorithms for a class of quadratic optimization problems that contain orthogonality constraints, i.e. constraints of the form $X^TX=I$, where $X \in {\mathbb R}^{m \times n}$ is the optimization variable. Such class of problems, which we denote by (QP-OC), is quite general and captures several well–studied problems in the literature … Read more

Two theoretical results for sequential semidefinite programming

We examine the local convergence of a sequential semidefinite programming approach for solving nonlinear programs with nonlinear semidefiniteness constraints. Known convergence results are extended to slightly weaker second order sufficient conditions and the resulting subproblems are shown to have local convexity properties that imply a weak form of self-concordance of the barrier subproblems. CitationPreprint, Mathematisches … Read more

Relaxing the Optimality Conditions of Box QP

We present semidefinite relaxations of nonconvex, box-constrained quadratic programming, which incorporate the first- and second-order necessary optimality conditions. We compare these relaxations with a basic semidefinite relaxation due to Shor, particularly in the context of branch-and-bound to determine a global optimal solution, where it is shown empirically that the new relaxations are significantly stronger. We … Read more

Sufficient and Necessary Conditions for Semidefinite Representability of Convex Hulls and Sets

The article proves sufficient conditions and necessary conditions for SDP representability of convex sets and convex hulls by proposing a new approach to construct SDP representations. The contributions of this paper are: (i) For bounded SDP representable sets $W_1,\cdots,W_m$, we give an explicit construction of an SDP representation for $conv(\cup_{k=1}^mW_k)$. This provides a technique for … Read more