A Semidefinite Optimization Approach to the Parallel Row Ordering Problem

The $k$-Parallel Row Ordering Problem (kPROP) is an extension of the Single-Row Facility Layout Problem (SRFLP) that considers arrangements of the departments along more than one row. We propose an exact algorithm for the kPROP that extends the semidefinite programming approach for the SRFLP by modelling inter-row distances as products of ordering variables. For k=2 … Read more

The Checkpoint Ordering Problem

We suggest a new variant of a row layout problem: Find an ordering of n departments with given lengths such that the total weighted sum of their distances to a given checkpoint is minimized. The Checkpoint Ordering Problem (COP) is both of theoretical and practical interest. It has several applications and is conceptually related to … Read more

A primal-simplex based Tardos’ algorithm

In the mid-eighties Tardos proposed a strongly polynomial algorithm for solving linear programming problems for which the size of the coefficient matrix is polynomially bounded by the dimension. Combining Orlin’s primal-based modification and Mizuno’s use of the simplex method, we introduce a modification of Tardos’ algorithm considering only the primal problem and using simplex method … Read more

On a new class of matrix support functionals with applications

A new class of matrix support functionals is presented which establish a connection between optimal value functions for quadratic optimization problems, the matrix-fractional function, the pseudo matrix-fractional function, and the nuclear norm. The support function is based on the graph of the product of a matrix with its transpose. Closed form expressions for the support … Read more

Matrix monotonicity and self-concordance:how to handle quantum entropy in optimization problems

Let $g$ be a continuously differentiable function whose derivative is matrix monotone on positive semi-axis. Such a function induces a function $\phi (x)=tr(g(x))$ on the cone of squares of an arbitrary Euclidean Jordan algebra. We show that $\phi (x) -\ln \det(x)$ is a self-concordant function on the interior of the cone. We also show that … Read more

On Augmentation Algorithms for Linear and Integer-Linear Programming: From Edmonds-Karp to Bland and Beyond

Motivated by Bland’s linear-programming generalization of the renowned Edmonds-Karp efficient refinement of the Ford-Fulkerson maximum-flow algorithm, we discuss three closely-related natural augmentation rules for linear and integer-linear optimization. In several nice situations, we show that polynomially-many augmentation steps suffice to reach an optimum. In particular, when using “discrete steepest-descent augmentations” (i.e., directions with the best … Read more

A tight iteration-complexity upper bound for the MTY predictor-corrector algorithm via redundant Klee-Minty cubes

It is an open question whether there is an interior-point algorithm for linear optimization problems with a lower iteration-complexity than the classical bound $\mathcal{O}(\sqrt{n} \log(\frac{\mu_1}{\mu_0}))$. This paper provides a negative answer to that question for a variant of the Mizuno-Todd-Ye predictor-corrector algorithm. In fact, we prove that for any $\epsilon >0$, there is a redundant … Read more

Projection methods in quantum information science

We consider the problem of constructing quantum operations or channels, if they exist, that transform a given set of quantum states $\{\rho_1, \dots, \rho_k\}$ to another such set $\{\hat\rho_1, \dots, \hat\rho_k\}$. In other words, we must find a {\em completely positive linear map}, if it exists, that maps a given set of density matrices to … Read more

Constraint Qualification Failure in Action

This note presents a theoretical analysis of disjunctive constraints featuring unbounded variables. In this framework, classical modeling techniques, including big-M approaches, are not applicable. We introduce a lifted second-order cone formulation of such on/off constraints and discuss related constraint qualification issues. A solution is proposed to avoid solvers’ failure. Citation H. L. Hijazi and L.Liberti … Read more

A Strongly Polynomial Simplex Method for Totally Unimodular LP

Kitahara and Mizuno get new bounds for the number of distinct solutions generated by the simplex method for linear programming (LP). In this paper, we combine results of Kitahara and Mizuno and Tardos’s strongly polynomial algorithm, and propose an algorithm for solving a standard form LP problem. The algorithm solves polynomial number of artificial LP … Read more