Semidefinite Programming Approach to Russell Measure Model

Throughout its evolution, data envelopment analysis (DEA) has mostly relied on linear programming, particularly because of simple primal-dual relations and the existence of standard software for solving linear programs. Although also non-linear models, such as Russell measure or hyperbolic measure models, have been introduced, their use in applications has been limited mainly because of their … Read more

A Penalty Method for Rank Minimization Problems in Symmetric Matrices

The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal … Read more

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Moment-sum-of-squares hierarchies of semidefinite programs can be used to approximate the volume of a given compact basic semialgebraic set $K$. The idea consists of approximating from above the indicator function of $K$ with a sequence of polynomials of increasing degree $d$, so that the integrals of these polynomials generate a convergence sequence of upper bounds … Read more

Rigorous results in electronic structure calculations

Electronic structure calculations, in particular the computation of the ground state energy, lead to challenging problems in optimization. These problems are of enormous importance in quantum chemistry for calculations of properties of solids and molecules. Minimization methods for computing the ground state energy can be developed by employing a variational approach, where the second-order reduced … Read more

Distributionally Robust Project Crashing with Partial or No Correlation Information

Crashing is a method for optimally shortening the project makespan by reducing the time of one or more activities in a project network by allocating resources to it. Activity durations are however uncertain and techniques in stochastic optimization, robust optimization and distributionally robust optimization have been developed to tackle this problem. In this paper, we … Read more

SPECTRA – a Maple library for solving linear matrix inequalities in exact arithmetic

This document briefly describes our freely distributed Maple library {\sc spectra}, for Semidefinite Programming solved Exactly with Computational Tools of Real Algebra. It solves linear matrix inequalities in exact arithmetic and it is targeted to small-size, possibly degenerate problems for which symbolic infeasibility or feasibility certificates are required. ArticleDownload View PDF

Moment methods in energy minimization: New bounds for Riesz minimal energy problems

We use moment methods to construct a converging hierarchy of optimization problems to lower bound the ground state energy of interacting particle systems. We approximate the infinite dimensional optimization problems in this hierarchy by block diagonal semidefinite programs. For this we develop the necessary harmonic analysis for spaces consisting of subsets of another space, and … Read more

Max-Norm Optimization for Robust Matrix Recovery

This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the uniform … Read more

On the identification of optimal partition for semidefinite optimization

The concept of the optimal partition was originally introduced for linear optimization and linear complementarity problems and subsequently extended to semidefinite optimization. For linear optimization and sufficient linear complementarity problems, from a central solution sufficiently close to the optimal set, the optimal partition and a maximally complementary optimal solution can be identified in strongly polynomial … Read more

Convergence rates of moment-sum-of-squares hierarchies for optimal control problems

We study the convergence rate of moment-sum-of-squares hierarchies of semidefinite programs for optimal control problems with polynomial data. It is known that these hierarchies generate polynomial under-approximations to the value function of the optimal control problem and that these under-approximations converge in the $L^1$ norm to the value function as their degree $d$ tends to … Read more