Randomized Policy Optimization for Optimal Stopping

Optimal stopping is the problem of determining when to stop a stochastic system in order to maximize reward, which is of practical importance in domains such as finance, operations management and healthcare. Existing methods for high-dimensional optimal stopping that are popular in practice produce deterministic linear policies — policies that deterministically stop based on the … Read more

Dissolving Constraints for Riemannian Optimization

In this paper, we consider optimization problems over closed embedded submanifolds of $\mathbb{R}^n$, which are defined by the constraints $c(x) = 0$. We propose a class of constraint dissolving approaches for these Riemannian optimization problems. In these proposed approaches, solving a Riemannian optimization problem is transferred into the unconstrained minimization of a constraint dissolving function … Read more

Convergence properties of an Objective-Function-Free Optimization regularization algorithm, including an $\mathcal{O}(\epsilon^{-3/2})$ complexity bound

An adaptive regularization algorithm for unconstrained nonconvex optimization is presented in which the objective function is never evaluated, but only derivatives are used. This algorithm belongs to the class of adaptive regularization methods, for which optimal worst-case complexity results are known for the standard framework where the objective function is evaluated. It is shown in … Read more

OFFO minimization algorithms for second-order optimality and their complexity

An Adagrad-inspired class of algorithms for smooth unconstrained optimization is presented in which the objective function is never evaluated and yet the gradient norms decrease at least as fast as O(1/\sqrt{k+1}) while second-order optimality measures converge to zero at least as fast as O(1/(k+1)^{1/3}). This latter rate of convergence is shown to be essentially sharp … Read more

Parametric complexity analysis for a class of first-order Adagrad-like algorithms

A class of algorithms for optimization in the presence of noise is presented, that does not require the evaluation of the objective function. This class generalizes the well-known Adagrad method. The complexity of this class is then analyzed as a function of its parameters, and it is shown that some methods of the class enjoy … Read more

First-Order Objective-Function-Free Optimization Algorithms and Their Complexity

A class of algorithms for unconstrained nonconvex optimization is considered where the value of the objective function is never computed. The class contains a deterministic version of the first-order Adagrad method typically used for minimization of noisy function, but also allows the use of second-order information when available. The rate of convergence of methods in … Read more

Stochastic trust-region and direct-search methods: A weak tail bound condition and reduced sample sizing

Using tail bounds, we introduce a new probabilistic condition for function estimation in stochastic derivative-free optimization which leads to a reduction in the number of samples and eases algorithmic analyses. Moreover, we develop simple stochastic direct-search and trust-region methods for the optimization of a potentially non-smooth function whose values can only be estimated via stochastic … Read more

Global Convergence of Sub-gradient Method for Robust Matrix Recovery: Small Initialization, Noisy Measurements, and Over-parameterization

In this work, we study the performance of sub-gradient method (SubGM) on a natural nonconvex and nonsmooth formulation of low-rank matrix recovery with $\ell_1$-loss, where the goal is to recover a low-rank matrix from a limited number of measurements, a subset of which may be grossly corrupted with noise. We study a scenario where the … Read more

Two efficient gradient methods with approximately optimal stepsizes based on regularization models for unconstrained optimization

It is widely accepted that the stepsize is of great significance to gradient method. Two efficient gradient methods with approximately optimal stepsizes mainly based on regularization models are proposed for unconstrained optimization. More exactly, if the objective function is not close to a quadratic function on the line segment between the current and latest iterates, … Read more

A minibatch stochastic Quasi-Newton method adapted for nonconvex deep learning problems

In this study, we develop a limited memory nonconvex Quasi-Newton (QN) method, tailored to deep learning (DL) applications. Since the stochastic nature of (sampled) function information in minibatch processing can affect the performance of QN methods, three strategies are utilized to overcome this issue. These involve a novel progressive trust-region radius update (suitable for stochastic … Read more