New subroutines for large-scale optimization

We present fourteen basic FORTRAN subroutines for large-scale unconstrained and box constrained optimization and large-scale systems of nonlinear equations. Subroutines {\tt PLIS} and {\tt PLIP}, intended for dense general optimization problems, are based on limited-memory variable metric methods. Subroutine {\tt PNET}, also intended for dense general optimization problems, is based on an inexact truncated Newton … Read more

LIBOPT – An environment for testing solvers on heterogeneous collections of problems

The Libopt environment is both a methodology and a set of tools that can be used for testing, comparing, and profiling solvers on problems belonging to various collections. These collections can be heterogeneous in the sense that their problems can have common features that differ from one collection to the other. Libopt brings a unified … Read more

Extending Algebraic Modelling Languages for Stochastic Programming

Algebraic modelling languages have gained wide acceptance and use in Mathematical Programming by researchers and practitioners. At a basic level, stochastic programming models can be defined using these languages by constructing their deterministic equivalent. Unfortunately, this leads to very large model data instances. We propose a direct approach in which the random values of the … Read more

Kestrel: An Interface from Optimization Modeling Systems to the NEOS Server

The NEOS Server provides access to a variety of optimization resources via the Internet. The new Kestrel interface to the Server enables local modeling environments to request NEOS optimization services and retrieve the results for local visualization and analysis, so that users have the same convenient access to remote NEOS solvers as to those installed … Read more

StAMPL: A Filtration-Oriented Modeling Tool for Stochastic Programming

Every multistage stochastic programming problem with recourse (MSPR) contains a filtration process. In this research, we created a notation that makes the filtration process the central syntactic construction of the MSPR. As a result, we achieve lower redundancy and higher modularity than is possible with the mathematical notation commonly associated with stochastic programming. To experiment … Read more

VSDP: Verified SemiDefinite Programming

VSDP is a MATLAB software package for rigorously solving semidefinite programming problems. It expresses these problems in a notation closely related to the form given in textbooks and scientific papers. Functions for computing verified forward error bounds of the true optimal value and verified certificates of feasibility and infeasibility are provided. All rounding errors due … Read more

Asynchronous parallel generating set search for linearly-constrained optimization

Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the … Read more

Nonlinear Optimization with GAMS /LGO

The Lipschitz Global Optimizer (LGO) software integrates global and local scope search methods, to handle nonlinear optimization models. Here we discuss the LGO implementation linked to the General Algebraic Modeling System (GAMS). First we review the key features and basic usage of the GAMS /LGO solver option, then present reproducible numerical results to illustrate its … Read more

OSiL: An Instance Language for Optimization

Distributed computing technologies such as Web Services are growing rapidly in importance in today’s computing environment. In the area of mathematical optimization, it is becoming increasingly common to separate modeling languages from optimization solvers. In fact, the modeling language software, solver software, and data used to generate a model instance might reside on different machines … Read more

A Particle Swarm Pattern Search Method for Bound Constrained Nonlinear Optimization

In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search … Read more