Asynchronous parallel generating set search for linearly-constrained optimization

Generating set search (GSS) is a family of direct search methods that encompasses generalized pattern search and related methods. We describe an algorithm for asynchronous linearly-constrained GSS, which has some complexities that make it different from both the asynchronous bound-constrained case as well as the synchronous linearly-constrained case. The algorithm has been implemented in the … Read more

Nonlinear Optimization with GAMS /LGO

The Lipschitz Global Optimizer (LGO) software integrates global and local scope search methods, to handle nonlinear optimization models. Here we discuss the LGO implementation linked to the General Algebraic Modeling System (GAMS). First we review the key features and basic usage of the GAMS /LGO solver option, then present reproducible numerical results to illustrate its … Read more

OSiL: An Instance Language for Optimization

Distributed computing technologies such as Web Services are growing rapidly in importance in today’s computing environment. In the area of mathematical optimization, it is becoming increasingly common to separate modeling languages from optimization solvers. In fact, the modeling language software, solver software, and data used to generate a model instance might reside on different machines … Read more

A Particle Swarm Pattern Search Method for Bound Constrained Nonlinear Optimization

In this paper we develop, analyze, and test a new algorithm for the global minimization of a function subject to simple bounds without the use of derivatives. The underlying algorithm is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the optional search … Read more

Benchmark of Some Nonsmooth Optimization Solvers for Computing Nonconvex Proximal Points

The major focus of this work is to compare several methods for computing the proximal point of a nonconvex function via numerical testing. To do this, we introduce two techniques for randomly generating challenging nonconvex test functions, as well as two very specific test functions which should be of future interest to Nonconvex Optimization Benchmarking. … Read more

MW: A Software Framework for Combinatorial Optimization on Computational Grids

Our goal in this paper is to demonstrate that branch-and-bound algorithms for combinatorial optimization can be effectively implemented on a relatively new type of multiprocessor platform known as a computational grid. We will argue that to easily and effectively harness the power of computational grids for branch-and-bound algorithms, the master-worker paradigm should be used to … Read more

TTTPLOTS: A perl program to create time-to-target plots

This papers describes a perl language program to create time-to-target solution value plots for measured CPU times that are assumed to fit a shifted exponential distribution. This is often the case in local search based heuristics for combinatorial optimization, such as simulated annealing, genetic algorithms, iterated local search, tabu search, WalkSAT, and GRASP. Such plots … Read more

Fast Moreau Envelope Computation I: Numerical Algorithms

The present article summarizes the state of the art algorithms to compute the discrete Moreau envelope, and presents a new linear-time algorithm, named NEP for NonExpansive Proximal mapping. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms are performed. Worst-case time complexity, convergence results, … Read more

Computational NETLIB experience with a dense projected gradient sagitta method

Computational results obtained when solving a subset of NETLIB problems by using a dense projected gradient implementation of the non-simplex active-set sagitta method presented in [12] are summarized. Two different addition rules for its initial phase are considered and, for each problem solved, two corresponding graphs are reported to illustrate the variations of the objective … Read more

Topology optimization of a mechanical component subject to dynamical constraints

This paper is concerned with the optimization of continuum structures under dynamic loading using methods from topology design. The constraint functions are non-linear and implicit, their evaluation requires the resolution of a computation-intensive finite-element analysis performed by a black-box commercial structural mechanics software such as MSC/Nastran. We first present a brief overview of topology optimization … Read more