Aircraft landing problems with aircraft classes

This paper focuses on the aircraft landing problem that is to assign landing times to aircraft approaching the airport under consideration. Each aircraft’s landing time must be in a time interval encompassing a target landing time. If the actual landing time deviates from the target landing time additional costs occur which depend on the amount … Read more

Flows and Decompositions of Games: Harmonic and Potential Games

In this paper we introduce a novel flow representation for finite games in strategic form. This representation allows us to develop a canonical direct sum decomposition of an arbitrary game into three components, which we refer to as the potential, harmonic and nonstrategic components. We analyze natural classes of games that are induced by this … Read more

Robust Markov Decision Processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider … Read more

Risk Adjusted Budget Allocation Models with Application in Homeland Security

This paper presents and studies several models for multi-criterion budget allocation problems under uncertainty. We start by introducing a robust weighted objective model, which is developed further using the concept of stochastic dominance to incorporate risk averseness of the decision maker. A budget minimization variant of this model is also presented. We use a Sample … Read more

Necessary optimality conditions for multiobjective bilevel programs

The multiobjective bilevel program is a sequence of two optimization problems where the upper level problem is multiobjective and the constraint region of the upper level problem is determined implicitly by the solution set to the lower level problem. In the case where the Karush-Kuhn-Tucker (KKT) condition is necessary and sufficient for global optimality of … Read more

Estimating Computational Noise

Computational noise in deterministic simulations is as ill-defined a concept as can be found in scientific computing. When coupled with adaptive strategies, the effects of finite precision destroy smoothness of the simulation output and complicate subsequent analysis. Following the work of Hamming on roundoff errors, we present a new algorithm, ECnoise, for quantifying the noise … Read more

Optimal location of family homes for dual career couples

The number of dual-career couples with children is growing fast. These couples face various challenging problems of organizing their lifes, in particular connected with childcare and time-management. As a typical example we study one of the difficult decision problems of a dual career couple from the point of view of operations research with a particular … Read more

Intractability of approximate multi-dimensional nonlinear optimization on independence systems

We consider optimization of nonlinear objective functions that balance $d$ linear criteria over $n$-element independence systems presented by linear-optimization oracles. For $d=1$, we have previously shown that an $r$-best approximate solution can be found in polynomial time. Here, using an extended Erdos-Ko-Rado theorem of Frankl, we show that for $d=2$, finding a $\rho n$-best solution … Read more

Risk-Averse Dynamic Programming for Markov Decision Processes

We introduce the concept of a Markov risk measure and we use it to formulate risk-averse control problems for two Markov decision models: a finite horizon model and a discounted infinite horizon model. For both models we derive risk-averse dynamic programming equations and a value iteration method. For the infinite horizon problem we also develop … Read more