Robust counterparts of inequalities containing sums of maxima of linear functions

This paper adresses the robust counterparts of optimization problems containing sums of maxima of linear functions and proposes several reformulations. These problems include many practical problems, e.g. problems with sums of absolute values, and arise when taking the robust counterpart of a linear inequality that is affine in the decision variables, affine in a parameter … Read more

A new robust cycle-based inventory control policy

In this paper, we propose a new robust cycle-based control policy for single installation inventory models with non-stationary uncertain demand. The policy is simple, flexible, easily implementable and preliminary numerical experiments suggest that the policy has very promising empirical performance. The policy can be used both when the excess demand is backlogged as well as … Read more

Robust Rankings for College Football

We investigate the sensitivity of the Colley Matrix (CM) rankings—one of six computer rankings used by the Bowl Championship Series—to (hypothetical) changes in the outcomes of (actual) games. Specifically, we measure the shift in the rankings of the top 25 teams when the win-loss outcome of, say, a single game between two teams, each with … Read more

Robust Network Design: Formulations, Valid Inequalities, and Computations

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks, operators highly overestimate the traffic volume during network planning. In this paper we consider telecommunication network design under traffic uncertainty, adapting the robust optimization approach of Bertsimas and Sim (2004). We present three different mathematical formulations for this problem, provide valid inequalities, … Read more

Improving Robust Rolling Stock Circulation in Rapid Transit Networks

The routing of the rolling stock depends strongly on the rolling stock assignment to di erent opera- tions and the shunting schedule. Therefore, the integration of these decision making is justi ed and is appropriate to introduce robustness in the model. We propose a new approach to obtain better circula- tions of the rolling stock material, solving … Read more

A General Framework for Designing Approximation Schemes for Combinatorial Optimization Problems with Many Objectives Combined Into One

In this paper, we present a general framework for designing approximation schemes for combinatorial optimization problems in which the objective function is a combination of more than one function. Examples of such problems include those in which the objective function is a product or ratio of two linear functions, parallel machine scheduling problems with the … Read more

A comparison of routing sets for robust network design

Designing a network able to route a set of non-simultaneous demand vectors is an important problem arising in telecommunications. The problem can be seen a two-stage robust program where the recourse function consists in choosing the routing for each demand vector. Allowing the routing to change arbitrarily as the demand varies yields a very difficult … Read more

Optimal Job Scheduling with Day-ahead Price and Random Local Distributed Generation: A Two-stage Robust Approach

In this paper, we consider a job scheduling problem with random local generation, in which some jobs must be scheduled day-ahead while the others can be scheduled in a real time fashion. To capture the randomness of the local distributed generation, we develop a two-stage robust optimization model by assuming an uncertainty set without probability … Read more

Decision Making under Uncertainty when Preference Information is Incomplete

We consider the problem of optimal decision making under uncertainty but assume that the decision maker’s utility function is not completely known. Instead, we consider all the utilities that meet some criteria, such as preferring certain lotteries over certain other lotteries and being risk averse, s-shaped, or prudent. This extends the notion of stochastic dominance. … Read more

A Polynomial-Time Solution Scheme for Quadratic Stochastic Programs

We consider quadratic stochastic programs with random recourse – a class of problems which is perceived to be computationally demanding. Instead of using mainstream scenario tree-based techniques, we reduce computational complexity by restricting the space of recourse decisions to those linear and quadratic in the observations, thereby obtaining an upper bound on the original problem. … Read more