Energy Security: a robust optimization approach to design a robust European energy supply via TIAM

Energy supply routes to a given TIAM region (say E.U.) are subject to randomness, resulting in partial or total closure of a route (corridor). For instance: a pipeline may be subject to technical problems that reduce its capacity. Or, oil supply by tanker may be reduced for political reasons or because of equipment mishaps at … Read more

Robust capacity expansion solutions for telecommunication networks with uncertain demands

We consider the capacity planning of telecommunication networks with linear investment costs and uncertain future traffic demands. Transmission capacities must be large enough to meet, with a high quality of service, the range of possible demands, after adequate routings of messages on the created network. We use the robust optimization methodology to balance the need … Read more

Distributionally Robust Joint Chance Constraints with Second-Order Moment Information

We develop tractable semidefinite programming (SDP) based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It is known that robust chance constraints can be conservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR) constraints. We first prove … Read more

Generalized Decision Rule Approximations for Stochastic Programming via Liftings

Stochastic programming provides a versatile framework for decision-making under uncertainty, but the resulting optimization problems can be computationally demanding. It has recently been shown that, primal and dual linear decision rule approximations can yield tractable upper and lower bounds on the optimal value of a stochastic program. Unfortunately, linear decision rules often provide crude approximations … Read more

Robust Optimization with Multiple Ranges: Theory and Application to R&D Project Selection

We present a robust optimization approach when the uncertainty in objective coefficients is described using multiple ranges for each coefficient. This setting arises when the value of the uncertain coefficients, such as cash flows, depends on an underlying random variable, such as the effectiveness of a new drug. Traditional robust optimization with a single range … Read more

An Efficient Method to Estimate the Suboptimality of Affine Controllers

We consider robust output feedback control of time-varying, linear discrete-time systems operating over a finite horizon. For such systems, we consider the problem of designing robust causal controllers that minimize the expected value of a convex quadratic cost function, subject to mixed linear state and input constraints. Determination of an optimal control policy for such … Read more

Robust Markov Decision Processes

Markov decision processes (MDPs) are powerful tools for decision making in uncertain dynamic environments. However, the solutions of MDPs are of limited practical use due to their sensitivity to distributional model parameters, which are typically unknown and have to be estimated by the decision maker. To counter the detrimental effects of estimation errors, we consider … Read more

Risk Adjusted Budget Allocation Models with Application in Homeland Security

This paper presents and studies several models for multi-criterion budget allocation problems under uncertainty. We start by introducing a robust weighted objective model, which is developed further using the concept of stochastic dominance to incorporate risk averseness of the decision maker. A budget minimization variant of this model is also presented. We use a Sample … Read more

Prediction Range Estimation from Noisy Raman Spectra

Inferences need to be drawn in biological systems using experimental multivariate data. The number of samples collected in many such experiments is small, and the data is noisy. We present and study the performance of a robust optimization (RO) model for such situations. We adapt this model to generate a minimum and a maximum estimation … Read more