Two-Stage Robust Power Grid Optimization Problem

Under the deregulated energy market environment, plus the integration of renewable energy generation, both the supply and demand of a power grid system are volatile and under uncertainty. Accordingly, a large amount of spinning reserve is required at each bus to maintain the reliability of the power grid system in the traditional approach. In this … Read more

Portfolio Selection under Model Uncertainty: A Penalized Moment-Based Optimization Approach

We present a new approach for portfolio selection when the underlying distribution of asset returns is uncertain or ambiguous to investors. In particular, we consider the case that an investor can formulate some reference financial models based on his/her prior beliefs or information, but is concerned about misspecification of the reference models and the associated … Read more

Robust and Stochastically Weighted Multi-Objective Optimization Models and Reformulations

In this paper we introduce robust and stochastically weighted sum approaches to deterministic and stochastic multi-objective optimization. The robust weighted sum approach minimizes the worst case weighted sum of objectives over a given weight region. We study the reformulations of the robust weighted sum problem under different definitions of deterministic weight regions. We next introduce … Read more

The value of rolling horizon policies for risk-averse hydro-thermal planning

We consider the optimal management of a hydro-thermal power system in the mid and long terms. From the optimization point of view, this amounts to a large-scale multistage stochastic linear program, often solved by combining sampling with decomposition algorithms, like stochastic dual dynamic programming. Such methodologies, however, may entail prohibitive computational time, especially when applied … Read more

Consistency of robust optimization

In recent years the robust counterpart approach, introduced and made popular by Ben-Tal, Nemirovski and El Ghaoui, gained more and more interest among both academics and practitioners. However, to the best of our knowledge, only very few results on the relationship between the original problem instance and the robust counterpart have been established. This exposition … Read more

Energy Security: a robust optimization approach to design a robust European energy supply via TIAM

Energy supply routes to a given TIAM region (say E.U.) are subject to randomness, resulting in partial or total closure of a route (corridor). For instance: a pipeline may be subject to technical problems that reduce its capacity. Or, oil supply by tanker may be reduced for political reasons or because of equipment mishaps at … Read more

Robust capacity expansion solutions for telecommunication networks with uncertain demands

We consider the capacity planning of telecommunication networks with linear investment costs and uncertain future traffic demands. Transmission capacities must be large enough to meet, with a high quality of service, the range of possible demands, after adequate routings of messages on the created network. We use the robust optimization methodology to balance the need … Read more

Distributionally Robust Joint Chance Constraints with Second-Order Moment Information

We develop tractable semidefinite programming (SDP) based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It is known that robust chance constraints can be conservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR) constraints. We first prove … Read more

Generalized Decision Rule Approximations for Stochastic Programming via Liftings

Stochastic programming provides a versatile framework for decision-making under uncertainty, but the resulting optimization problems can be computationally demanding. It has recently been shown that, primal and dual linear decision rule approximations can yield tractable upper and lower bounds on the optimal value of a stochastic program. Unfortunately, linear decision rules often provide crude approximations … Read more

Robust Optimization with Multiple Ranges: Theory and Application to R&D Project Selection

We present a robust optimization approach when the uncertainty in objective coefficients is described using multiple ranges for each coefficient. This setting arises when the value of the uncertain coefficients, such as cash flows, depends on an underlying random variable, such as the effectiveness of a new drug. Traditional robust optimization with a single range … Read more