Assessing the Cost of the Hazard-Decision Simplification in Multistage Stochastic Hydrothermal Scheduling

Hydropower is one of the world’s primary renewable energy sources whose usage has profound economic, environmental, and social impacts. We focus on the dispatch of generating units and the storage policy of hydro resources. In this context, an accurate assessment of the water opportunity-cost is cru- cial for driving the sustainable use of this scarce … Read more

Multi-Stage Stochastic Programming Models for Provisioning Cloud Computing Resources

We focus on the resource provisioning problem of a cloud consumer from an Infrastructure-as-a-Service type of cloud. The cloud provider offers two deployment options, which can be mixed and matched as appropriate. Cloud instances may be reserved for a fixed time period in advance at a smaller usage cost per hour but require a full … Read more

Stochastic Decomposition for Two-stage Stochastic Linear Programs with Random Cost Coefficients

Stochastic decomposition (SD) has been a computationally effective approach to solve large-scale stochastic programming (SP) problems arising in practical applications. By using incremental sampling, this approach is designed to discover an appropriate sample size for a given SP instance, thus precluding the need for either scenario reduction or arbitrary sample sizes to create sample average … Read more

Two-stage stochastic days-off scheduling of multi-skilled analysts with training options

Motivated by a cybersecurity application, this paper studies a two-stage, stochastic days-off scheduling problem with 1) many types of jobs that require specialized training, 2) many multi-skilled analysts, 3) the ability to shape analyst skill sets through training decisions, and 4) a large number of possible future demand scenarios. We provide a integer linear program … Read more

Optimal Transport Based Distributionally Robust Optimization: Structural Properties and Iterative Schemes

We consider optimal transport based distributionally robust optimization (DRO) problems with locally strongly convex transport cost functions and affine decision rules. Under conventional convexity assumptions on the underlying loss function, we obtain structural results about the value function, the optimal policy, and the worst-case optimal transport adversarial model. These results expose a rich structure embedded … Read more

Analysis of Models for the Stochastic Outpatient Procedure Scheduling Problem

In this paper, we present a new stochastic mixed-integer linear programming model for the Stochastic Outpatient Procedure Scheduling Problem (SOPSP). In this problem, we schedule a day’s worth of procedures for a single provider, where each procedure has a known type and associated probability distribution of random duration. Our objective is to minimize the expectation … Read more

Wasserstein Distributionally Robust Kalman Filtering

We study a distributionally robust mean square error estimation problem over a nonconvex Wasserstein ambiguity set containing only normal distributions. We show that the optimal estimator and the least favorable distribution form a Nash equilibrium. Despite the non-convex nature of the ambiguity set, we prove that the estimation problem is equivalent to a tractable convex … Read more

Distributionally Robust Optimization with Decision-Dependent Ambiguity Set

We introduce a new class of distributionally robust optimization problems under decision-dependent ambiguity sets. In particular, as our ambiguity sets we consider balls centered on a decision-dependent probability distribution. The balls are based on a class of earth mover’s distances that includes both the total variation distance and the Wasserstein metrics. We discuss the main … Read more

Inexact cuts in Stochastic Dual Dynamic Programming

We introduce an extension of Stochastic Dual Dynamic Programming (SDDP) to solve stochastic convex dynamic programming equations. This extension applies when some or all primal and dual subproblems to be solved along the forward and backward passes of the method are solved with bounded errors (inexactly). This inexact variant of SDDP is described both for … Read more

Chance Constrained Programs with Gaussian Mixture Models

In this paper, we discuss input modeling and solution techniques for several classes of chance constrained programs (CCPs). We propose to use Gaussian mixture models (GMM), a semi-parametric approach, to fit the data available and to model the randomness. We demonstrate the merits of using GMM. We consider several scenarios that arise from practical applications … Read more