Efficient Methods for Stochastic Composite Optimization

This paper considers an important class of convex programming problems whose objective function $\Psi$ is given by the summation of a smooth and non-smooth component. Further, it is assumed that the only information available for the numerical scheme to solve these problems is the subgradient of $\Psi$ contaminated by stochastic noise. Our contribution mainly consists … Read more

Scalable Heuristics for Stochastic Programming with Scenario Selection

We describe computational procedures to solve a wide-ranging class of stochastic programs with chance constraints where the random components of the problem are discretely distributed. Our procedures are based on a combination of Lagrangian relaxation and scenario decomposition, which we solve using a novel variant of Rockafellar and Wets’ progressive hedging algorithm. Experiments demonstrate the … Read more

Validation Analysis of Robust Stochastic Approximation Method

The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing robust stochastic approximation (SA) type algorithms. To this end we show that while running a Robust Mirror Descent Stochastic Approximation procedure one can compute, with a small additional effort, lower and upper statistical bounds for the optimal objective … Read more

Algorithms for stochastic lot-sizing problems with backlogging

As a traditional model in the operations research and management science domain, lot-sizing problem is embedded in many application problems such as production and inventory planning and has been consistently drawing attentions from researchers. There is significant research progress on polynomial time algorithm developments for deterministic uncapacitated lot-sizing problems based on Wagner-and-Whitin property. However, in … Read more

Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion

In this paper, we propose a semidefinite optimization (SDP) based model for the class of minimax two-stage stochastic linear optimization problems with risk aversion. The distribution of the second-stage random variables is assumed to be chosen from a set of multivariate distributions with known mean and second moment matrix. For the minimax stochastic problem with … Read more

Value-at-Risk optimization using the difference of convex algorithm

Value-at-Risk (VaR) is an integral part of contemporary financial regulations. Therefore, the measurement of VaR and the design of VaR optimal portfolios are highly relevant problems for financial institutions. This paper treats a VaR constrained Markowitz style portfolio selection problem when the distribution of returns of the considered assets are given in the form of … Read more

Iterative Estimation Maximization for Stochastic Linear Programs with Conditional Value-at-Risk Constraints

We present a new algorithm, Iterative Estimation Maximization (IEM), for stochastic linear programs with Conditional Value-at-Risk constraints. IEM iteratively constructs a sequence of compact-sized linear optimization problems, and solves them sequentially to find the optimal solution. The problem size IEM solves in each iteration is unaffected by the size of random samples, which makes it … Read more

Large Deviations of Vector-valued Martingales in 2-Smooth Normed Spaces

In this paper, we derive exponential bounds on probabilities of large deviations for “light tail” martingales taking values in finite-dimensional normed spaces. Our primary emphasis is on the case where the bounds are dimension-independent or nearly so. We demonstrate that this is the case when the norm on the space can be approximated, within an … Read more

An information-based approximation scheme for stochastic optimization problems in continuous time

Dynamic stochastic optimization problems with a large (possibly infinite) number of decision stages and high-dimensional state vector are inherently difficult to solve. In fact, scenario tree based algorithms are unsuitable for problems with many stages, while dynamic programming type techniques are unsuitable for problems with many state variables. This article proposes a stage aggregation scheme … Read more

Disjunctive Decomposition for Two-Stage Stochastic Mixed-Binary Programs with Random Recourse

This paper introduces disjunctive decomposition for two-stage mixed 0-1 stochastic integer programs (SIPs) with random recourse. Disjunctive decomposition allows for cutting planes based on disjunctive programming to be generated for each scenario subproblem under a temporal decomposition setting of the SIP problem. A new class of valid inequalities for mixed 0-1 SIP with random recourse … Read more