A Warm-Start Approach for Large-Scale Stochastic Linear Programs

We describe a method of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree … Read more

A New Stochastic Algorithm for Engineering Optimization Problems

This paper proposes a new stochastic algorithm, Search via Probability (SP) algorithm, for single-objective optimization problems. The SP algorithm uses probabilities to control the process of searching for optimal solutions. We calculate probabilities of the appearance of a better solution than the current one on each iteration, and on the performance of SP algorithm we … Read more

Step decision rules for multistage stochastic programming: a heuristic approach

Stochastic programming with step decision rules, SPSDR, is an attempt to overcome the curse of computational complexity of multistage stochastic programming problems. SPSDR combines several techniques. The first idea is to work with independent experts. Each expert is confronted with a sample of scenarios drawn at random from the original stochastic process. The second idea … Read more

On complexity of Shmoys – Swamy class of two-stage linear stochastic programming problems

We consider a class of two-stage linear stochastic programming problems, introduced by Shmoys and Swamy (2004), motivated by a relaxation of a stochastic set cover problem. We show that the sample size required to solve this problem by the sample average approximation (SAA) method with a relative accuracy $\kappa>0$ and confidence $1-\alpha$ is polynomial in … Read more

Goal Driven Optimization

Achieving a targeted objective, goal or aspiration level are relevant aspects of decision making under uncertainties. We develop a goal driven stochastic optimization model that takes into account an aspiration level. Our model maximizes the shortfall aspiration level criterion}, which encompasses the probability of success in achieving the goal and an expected level of under-performance … Read more

Valid Inequalities and Restrictions for Stochastic Programming Problems with First Order Stochastic Dominance Constraints

Stochastic dominance relations are well-studied in statistics, decision theory and economics. Recently, there has been significant interest in introducing dominance relations into stochastic optimization problems as constraints. In the discrete case, stochastic optimization models involving second order stochastic dominance (SSD) constraints can be solved by linear programming (LP). However, problems involving first order stochastic dominance … Read more

Totally Unimodular Stochastic Programs

We consider totally unimodular stochastic programs, that is, stochastic programs whose extensive-form constraint matrix is totally unimodular. We generalize the notion of total unimodularity to apply to sets of matrics and provide properties of such sets. Using this notion, we give several sufficient conditions for specific classes of problems. When solving such problems using the … Read more

On Rates of Convergence for Stochastic Optimization Problems Under Non-I.I.D. Sampling

In this paper we discuss the issue of solving stochastic optimization problems by means of sample average approximations. Our focus is on rates of convergence of estimators of optimal solutions and optimal values with respect to the sample size. This is a well-studied problem in case the samples are independent and identically distributed (i.e., when … Read more

A robust approach to the chance-constrained knapsack problem

Chance-constrained programming is a relevant model for many concrete problems. However, it is known to be very hard to tackle directly. In this paper, the chance-constrained knapsack problem (CKP) is addressed. Relying on the recent advances in robust optimization, a tractable combinatorial algorithm is proposed to solve CKP. It always provides feasible solutions for CKP. … Read more

A Tractable Approximation of Stochastic Programming via Robust Optimization

Stochastic programming, despite its immense modeling capabilities, is well known to be computationally excruciating. In this paper, we introduce a unified framework of approximating multiperiod stochastic programming from the perspective of robust optimization. Specifically, we propose a framework that integrates multistage modeling with safeguarding constraints. The framework is computationally tractable in the form of second … Read more