Robust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty

In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we … Read more

A dynamic programming approach for a class of robust optimization problems

Common approaches to solve a robust optimization problem decompose the problem into a master problem (MP) and adversarial separation problems (APs). MP contains the original robust constraints, however written only for finite numbers of scenarios. Additional scenarios are generated on the fly by solving the APs. We consider in this work the budgeted uncertainty polytope … Read more

Robust constrained shortest path problems under budgeted uncertainty

We study the robust constrained shortest path problem under resource uncertainty. After proving that the problem is \NPhard in the strong sense for arbitrary uncertainty sets, we focus on budgeted uncertainty sets introduced by Bertsimas and Sim (2003) and their extension to variable uncertainty by Poss (2013). We apply classical techniques to show that the … Read more

Efficient approaches for the robust network loading problem

We consider the Robust Network Loading problem with splittable flows and demands that belong to the budgeted uncertainty set. We compare the optimal solution cost and computational cost of the problem when using static routing, volume routing, affine routing, and dynamic routing. For the first three routing types, we compare the compact formulation with a … Read more

Robust combinatorial optimization with cost uncertainty

We present in this paper a new model for robust combinatorial optimization with cost uncertainty that generalizes the classical budgeted uncertainty set. We suppose here that the budget of uncertainty is given by a function of the problem variables, yielding an uncertainty multifunction. The new model is less conservative than the classical model and approximates … Read more