The Multi-Stop Station Location Problem

We introduce the (directed) multi-stop station location problem. The goal is to install stations such that ordered (multi-)sets of stops can be traversed with respect to range restrictions that are reset whenever a station is visited. Applications arise in telecommunications and transportation, e.g., charging station placement problems. The problem generalizes several network optimization problems such … Read more

Energy-Efficient Timetabling in a German Underground System

Timetabling of railway traffic and other modes of transport is among the most prominent applications of discrete optimization in practice. However, it has only been recently that the connection between timetabling and energy consumption has been studied more extensively. In our joint project VAG Verkehrs-Aktiengesellschaft, the transit authority and operator of underground transport in the … Read more

On Modeling Local Search with Special-Purpose Combinatorial Optimization Hardware

As we approach the physical limits predicted by Moore’s law, a variety of specialized hardware is emerging to tackle specialized tasks in different domains. Within combinatorial optimization, adiabatic quantum computers, CMOS annealers, and optical parametric oscillators are few of the emerging specialized hardware technology aimed at solving optimization problems. In terms of mathematical framework, the … Read more

Exact solution of the donor-limited nearest neighbor hot deck imputation problem

Data quality in population surveys suffers from missing responses. We use combinatorial optimization to create a complete and coherent data set. The methods are based on the widespread nearest neighbor hot deck imputation method that replaces the missing values with observed values from a close unit, the so-called donor. As a repeated use of donors … Read more

Constraint Programming Approaches for the Discretizable Molecular Distance Geometry Problem

The Distance Geometry Problem (DGP) seeks to find positions for a set of points in geometric space when some distances between pairs of these points are known. The so-called discretization assumptions allow to discretize the search space of DGP instances. In this paper, we focus on a key subclass of DGP, namely the Discretizable Molecular … Read more

Globalized Robust Optimization with Gamma-Uncertainties

Globalized robust optimization has been proposed as a generalization of the standard robust optimization framework in order to allow for a controlled decrease in protection depending on the distance of the realized scenario from the predefined uncertainty set. In this work, we specialize the notion of globalized robustness to Gamma-uncertainty in order to extend its … Read more

A Tutorial on Formulating and Using QUBO Models

The Quadratic Unconstrained Binary Optimization (QUBO) model has gained prominence in recent years with the discovery that it unifies a rich variety of combinatorial optimization problems. By its association with the Ising problem in physics, the QUBO model has emerged as an underpinning of the quantum computing area known as quantum annealing and has become … Read more

A Tutorial on Formulating QUBO Models

The field of Combinatorial Optimization (CO) is one of the most important areas in the general field of optimization, with important applications found in every industry, including both the private and public sectors. It is also one of the most active research areas pursued by the research communities of Operations Research, Computer Science, and Analytics … Read more

Efficient heuristic algorithm for identifying critical nodes in planar networks

This paper presents a new method for identifying critical nodes in planar networks. We propose an efficient method to evaluate the quality of solutions by using special properties of planar networks. It enables us to develop a computationally efficient heuristic algorithm for the problem. The proposed algorithm assisted on randomly generated planar networks. The experimental … Read more

Benders Decomposition for Very Large Scale Partial Set Covering and Maximal Covering Problems

Covering problems constitute an important family of facility location problems. This paper intro- duces a new exact algorithm for two important members of this family: i) the maximal covering location problem, which requires finding a subset of facilities that maximizes the amount of demand covered while respecting a budget constraint on the cost of the … Read more