Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary

In this paper we consider the minimization of a continuous function that is potentially not differentiable or not twice differentiable on the boundary of the feasible region. By exploiting an interior point technique, we present first- and second-order optimality conditions for this problem that reduces to classical ones when the derivative on the boundary is … Read more

On High-order Model Regularization for Constrained Optimization

In two recent papers regularization methods based on Taylor polynomial models for minimization were proposed that only rely on H\”older conditions on the higher order employed derivatives. Grapiglia and Nesterov considered cubic regularization with a sufficient descent condition that uses the current gradient and resembles the classical Armijo’s criterion. Cartis, Gould, and Toint used Taylor … Read more

Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization

Sequential optimality conditions for constrained optimization are necessarily satisfied by local minimizers, independently of the fulfillment of constraint qualifications. These conditions support the employment of different stopping criteria for practical optimization algorithms. On the other hand, when an appropriate strict constraint qualification associated with some sequential optimality condition holds at a point that satisfies the … Read more

Cutting Box Strategy: an algorithmic framework for improving metaheuristics for continuous global optimization

In this work, we present a new framework to increase effectiveness of metaheuristics in seeking good solutions for the general nonlinear optimization problem, called Cutting Box Strategy (CBS). CBS is based on progressive reduction of the search space through the use of intelligent multi-starts, where solutions already obtained cannot be revisited by the adopted metaheuristic. … Read more

A cone-continuity constraint qualification and algorithmic consequences

Every local minimizer of a smooth constrained optimization problem satisfies the sequential Approximate Karush-Kuhn-Tucker (AKKT) condition. This optimality condition is used to define the stopping criteria of many practical nonlinear programming algorithms. It is natural to ask for conditions on the constraints under which AKKT implies KKT. These conditions will be called Strict Constraint Qualifications … Read more

A Flexible Iterative Solver for Nonconvex, Equality-Constrained Quadratic Subproblems

We present an iterative primal-dual solver for nonconvex equality-constrained quadratic optimization subproblems. The solver constructs the primal and dual trial steps from the subspace generated by the generalized Arnoldi procedure used in flexible GMRES (FGMRES). This permits the use of a wide range of preconditioners for the primal-dual system. In contrast with FGMRES, the proposed … Read more

Quadratic regularization projected alternating Barzilai–Borwein method for constrained optimization

In this paper, based on the regularization techniques and projected gradient strategies, we present a quadratic regularization projected alternating Barzilai–Borwein (QRPABB) method for minimizing differentiable functions on closed convex sets. We show the convergence of the QRPABB method to a constrained stationary point for a nonmonotone line search. When the objective function is convex, we … Read more

Globally Convergent Evolution Strategies for Constrained Optimization.

In this work we propose, analyze, and test algorithms for linearly constrained optimization when no use of derivatives of the objective function is made. The proposed methodology is built upon the globally convergent evolution strategies previously introduced by the authors for unconstrained optimization. Two approaches are encompassed to handle the constraints. In a first approach, … Read more

Forward – Backward Greedy Algorithms for Atomic – Norm Regularization

In many signal processing applications, one aims to reconstruct a signal that has a simple representation with respect to a certain basis or frame. Fundamental elements of the basis known as “atoms” allow us to define “atomic norms” that can be used to construct convex regularizers for the reconstruction problem. Efficient algorithms are available to … Read more

An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization problems. The method is based on an approach proposed by Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality constrained problems. Our method is similar in that it achieves global convergence guarantees by combining a trust-region methodology with a funnel mechanism, … Read more