Cutting Planes by Projecting Interior Points onto Polytope Facets

Given a point x inside a polytope P and a direction d, the projection of x along d asks to find the maximum step length t such that x+td is feasible; we say x+td is a pierce point because it belongs to the boundary of P. We address this projection sub-problem with arbitrary interior points … Read more

Scanning integer points with lex-inequalities: A finite cutting plane algorithm for integer programming with linear objective

We consider the integer points in a unimodular cone K ordered by a lexicographic rule defined by a lattice basis. To each integer point x in K we associate a family of inequalities (lex-inequalities) that defines the convex hull of the integer points in K that are not lexicographically smaller than x. The family of … Read more

The Supporting Hyperplane Optimization Toolkit

In this paper, an open source solver for mixed-integer nonlinear programming (MINLP) problems is presented. The Supporting Hyperplane Optimization Toolkit (SHOT) combines a dual strategy based on polyhedral outer approximations (POA) with primal heuristics. The outer approximation is achieved by expressing the nonlinear feasible set of the MINLP problem with linearizations obtained with the extended … Read more

Outer Approximation for Integer Nonlinear Programs via Decision Diagrams

As an alternative to traditional integer programming (IP), decision diagrams (DDs) provide a new solution technology for discrete problems based on their combinatorial structure and dynamic programming representation. While the literature mainly focuses on the competitive aspects of DDs as a stand-alone solver, we investigate their complementary role by studying IP techniques that can be … Read more

A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems

Here we present a center-cut algorithm for convex mixed-integer nonlinear programming (MINLP) that can either be used as a primal heuristic or as a deterministic solution technique. Like many other algorithms for convex MINLP, the center-cut algorithm constructs a linear approximation of the original problem. The main idea of the algorithm is to use the … Read more

The Strength of Multi-row Aggregation Cuts for Sign-pattern Integer Programs

In this paper, we study the strength of aggregation cuts for sign-pattern integer programs (IPs). Sign-pattern IPs are a generalization of packing IPs and are of the form {x \in Z^n | Ax = 0} where for a given column j, A_{ij} is either non-negative for all i or non-positive for all i. Our first … Read more

Optimal cutting planes from the group relaxations

We study quantitative criteria for evaluating the strength of valid inequalities for Gomory and Johnson’s finite and infinite group models and we describe the valid inequalities that are optimal for these criteria. We justify and focus on the criterion of maximizing the volume of the nonnegative orthant cut off by a valid inequality. For the … Read more

Approximation of Minimal Functions by Extreme Functions

In a recent paper, Basu, Hildebrand, and Molinaro established that the set of continuous minimal functions for the 1-dimensional Gomory-Johnson infinite group relaxation possesses a dense subset of extreme functions. The n-dimensional version of this result was left as an open question. In the present paper, we settle this query in the affirmative: for any … Read more

Improved Space-State Relaxation for Constrained Two-Dimensional Guillotine Cutting Problems

Christofides and Hadjiconstantinou introduced a dynamic programming state space relaxation for obtaining upper bounds for the Constrained Two-dimensional Guillotine Cutting Problem. The quality of those bounds depend on the chosen item weights, they are adjusted using a subgradient-like algorithm. This paper proposes Algorithm X, a new weight adjusting algorithm based on integer programming that provably … Read more

Facets for Single Module and Multi-Module Capacitated Lot-Sizing Problems without Backlogging

In this paper, we consider the well-known constant-batch lot-sizing problem, which we refer to as the single module capacitated lot-sizing (SMLS) problem, and multi-module capacitated lot-sizing (MMLS) problem. We provide sufficient conditions under which the (k,l,S,I) inequalities of Pochet and Wolsey (Math of OR 18: 767-785, 1993), the mixed (k,l,S,I) inequalities, derived using mixing procedure … Read more