Distributionally Robust Logistic Regression

This paper proposes a distributionally robust approach to logistic regression. We use the Wasserstein distance to construct a ball in the space of probability distributions centered at the uniform distribution on the training samples. If the radius of this ball is chosen judiciously, we can guarantee that it contains the unknown data-generating distribution with high … Read more

Distributionally robust chance-constrained games: Existence and characterization of Nash equilibrium

We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider … Read more

Stability Analysis for Mathematical Programs with Distributionally Robust Chance Constraint

Stability analysis for optimization problems with chance constraints concerns impact of variation of probability measure in the chance constraints on the optimal value and optimal solutions and research on the topic has been well documented in the literature of stochastic programming. In this paper, we extend such analysis to optimization problems with distributionally robust chance … Read more

Quantitative Stability Analysis for Distributionally Robust Optimization With Moment Constraints

In this paper we consider a broad class of distributionally robust optimization (DRO for short) problems where the probability of the underlying random variables depends on the decision variables and the ambiguity set is de ned through parametric moment conditions with generic cone constraints. Under some moderate conditions including Slater type conditions of cone constrained moment … Read more

A Distributionally-robust Approach for Finding Support Vector Machines

The classical SVM is an optimization problem minimizing the hinge losses of mis-classified samples with the regularization term. When the sample size is small or data has noise, it is possible that the classifier obtained with training data may not generalize well to pop- ulation, since the samples may not accurately represent the true population … Read more

Data-Driven Distributionally Robust Optimization Using the Wasserstein Metric: Performance Guarantees and Tractable Reformulations

We consider stochastic programs where the distribution of the uncertain parameters is only observable through a finite training dataset. Using the Wasserstein metric, we construct a ball in the space of (multivariate and non-discrete) probability distributions centered at the uniform distribution on the training samples, and we seek decisions that perform best in view of … Read more

A Semi-Infinite Programming Approach for Distributionally Robust Reward-Risk Ratio Optimization with Matrix Moments Constraints

Reward-risk ratio optimization is an important mathematical approach in finance. In this paper, we revisit the model by considering a situation where an investor does not have complete information on the distribution of the underlying uncertainty and consequently a robust action is taken against the risk arising from ambiguity of the true distribution. We propose … Read more

Robust Growth-Optimal Portfolios

The growth-optimal portfolio is designed to have maximum expected log-return over the next rebalancing period. Thus, it can be computed with relative ease by solving a static optimization problem. The growth-optimal portfolio has sparked fascination among finance professionals and researchers because it can be shown to outperform any other portfolio with probability 1 in the … Read more

Ambiguous Probabilistic Programs

Probabilistic programs are widely used decision models. When implemented in practice, however, there often exists distributional ambiguity in these models. In this paper, we model the ambiguity using the likelihood ratio (LR) and use LR to construct various ambiguity sets. We consider ambiguous probabilistic programs which optimize under the worst case. Ambiguous probabilistic programs can … Read more

A practicable framework for distributionally robust linear optimization

We developed a modular framework to obtain exact and approximate solutions to a class of linear optimization problems with recourse with the goal to minimize the worst-case expected objective over an ambiguity set of distributions. The ambiguity set is specified by linear and conic quadratic representable expectation constraints and the support set is also linear … Read more