Spectral estimates for unreduced symmetric KKT systems arising from Interior Point methods

We consider symmetrized KKT systems arising in the solution of convex quadratic programming problems in standard form by Interior Point methods. Their coefficient matrices usually have 3×3 block structure and, under suitable conditions on both the quadratic programming problem and the solution, they are nonsingular in the limit. We present new spectral estimates for these … Read more

Eigenvalue, Quadratic Programming, and Semidefinite Programming Relaxations for a Cut Minimization Problem

We consider the problem of partitioning the node set of a graph into $k$ sets of given sizes in order to \emph{minimize the cut} obtained using (removing) the $k$-th set. If the resulting cut has value $0$, then we have obtained a vertex separator. This problem is closely related to the graph partitioning problem. In … Read more

Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods

Interior-point methods feature prominently among numerical methods for inequality-constrained optimization problems, and involve the need to solve a sequence of linear systems that typically become increasingly ill-conditioned with the iterations. To solve these systems, whose original form has a nonsymmetric 3×3 block structure, it is common practice to perform block Gaussian elimination and either solve … Read more

Spectral Bounds for Sparse PCA: Exact & Greedy Algorithms

Sparse PCA seeks approximate sparse “eigenvectors” whose projections capture the maximal variance of data. As a cardinality-constrained and non-convex optimization problem, it is NP-hard and yet it is encountered in a wide range of applied fields, from bio-informatics to finance. Recent progress has focused mainly on continuous approximation and convex relaxation of the hard cardinality … Read more