A New Unblocking Technique to Warmstart Interior Point Methods based on Sensitivity Analysis

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced … Read more

An Inexact SQP Method for Equality Constrained Optimization

We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved … Read more

Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs

We present a two-phase algorithm for solving large-scale quadratic programs (QPs). In the first phase, gradient-projection iterations approximately minimize an augmented Lagrangian function and provide an estimate of the optimal active set. In the second phase, an equality-constrained QP defined by the current inactive variables is approximately minimized in order to generate a second-order search … Read more

An efficient conjugate direction method with orthogonalization for large-scale quadratic optimization problems

A new conjugate direction method is proposed, which is based on an orthogonalization procedure and does not make use of line searches for the conjugate vector set construction. This procedure prevents the set of conjugate vectors from degeneracy and eliminates high sensitivity to computation errors pertinent to methods of conjugate directions, resulting in an efficient … Read more

Primal interior-point method for large sparse minimax optimization.

In this paper, we propose an interior-point method for large sparse minimax optimization. After a short introduction, where various barrier terms are discussed, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results … Read more

Trust-region interior-point method for large sparse l_1 optimization.

In this paper, we propose an interior-point method for large sparse l_1 optimization. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results of computational experiments given in this … Read more

Sequential Subspace Optimization Method for Large-Scale Unconstrained Problems

We present the Sequential Subspace Optimization (SESOP) method for large scale smooth unconstrained problems. At each iteration we search for a minimum of the objective function over a subspace spanned by the current gradient and by directions of few previous steps. We also include into this subspace the direction from the starting point to the … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more

An Extension of the Conjugate Directions Method With Orthogonalization to Large-Scale Problems With Bound Constraints

In our reports on GAMM-04 and ECCOMAS-04 there has been presented a new conjugate directions method for large scale unconstrained minimization problems. High efficiency of this method is ensured by employing an orthogonalization procedure: when constructing the next conjugate vector the component of the gradient is used that is orthogonal to the subspace of preceding … Read more

Variable metric method for minimization of partially separable nonsmooth functions.

In this report, we propose a new partitioned variable metric method for minimization of nonsmooth partially separable functions. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Computational experiments given confirm efficiency and robustness of the new … Read more