New subroutines for large-scale optimization

We present fourteen basic FORTRAN subroutines for large-scale unconstrained and box constrained optimization and large-scale systems of nonlinear equations. Subroutines {\tt PLIS} and {\tt PLIP}, intended for dense general optimization problems, are based on limited-memory variable metric methods. Subroutine {\tt PNET}, also intended for dense general optimization problems, is based on an inexact truncated Newton … Read more

New class of limited-memory variationally-derived variable metric methods

A new family of limited-memory variationally-derived variable metric or quasi-Newton methods for unconstrained minimization is given. The methods have quadratic termination property and use updates, invariant under linear transformations. Some encouraging numerical experience is reported. CitationTechnical Report V-973. Prague, ICS AS CR 2006.ArticleDownload View PDF

A New Unblocking Technique to Warmstart Interior Point Methods based on Sensitivity Analysis

One of the main drawbacks associated with Interior Point Methods (IPM) is the perceived lack of an efficient warmstarting scheme which would enable the use of information from a previous solution of a similar problem. Recently there has been renewed interest in the subject. A common problem with warmstarting for IPM is that an advanced … Read more

An Inexact SQP Method for Equality Constrained Optimization

We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved … Read more

Global and finite termination of a two-phase augmented Lagrangian filter method for general quadratic programs

We present a two-phase algorithm for solving large-scale quadratic programs (QPs). In the first phase, gradient-projection iterations approximately minimize an augmented Lagrangian function and provide an estimate of the optimal active set. In the second phase, an equality-constrained QP defined by the current inactive variables is approximately minimized in order to generate a second-order search … Read more

An efficient conjugate direction method with orthogonalization for large-scale quadratic optimization problems

A new conjugate direction method is proposed, which is based on an orthogonalization procedure and does not make use of line searches for the conjugate vector set construction. This procedure prevents the set of conjugate vectors from degeneracy and eliminates high sensitivity to computation errors pertinent to methods of conjugate directions, resulting in an efficient … Read more

Primal interior-point method for large sparse minimax optimization.

In this paper, we propose an interior-point method for large sparse minimax optimization. After a short introduction, where various barrier terms are discussed, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results … Read more

Trust-region interior-point method for large sparse l_1 optimization.

In this paper, we propose an interior-point method for large sparse l_1 optimization. After a short introduction, the complete algorithm is introduced and some implementation details are given. We prove that this algorithm is globally convergent under standard mild assumptions. Thus nonconvex problems can be solved successfully. The results of computational experiments given in this … Read more

Sequential Subspace Optimization Method for Large-Scale Unconstrained Problems

We present the Sequential Subspace Optimization (SESOP) method for large scale smooth unconstrained problems. At each iteration we search for a minimum of the objective function over a subspace spanned by the current gradient and by directions of few previous steps. We also include into this subspace the direction from the starting point to the … Read more

Support Vector Machine via Sequential Subspace Optimization

We present an optimization engine for large scale pattern recognition using Support Vector Machine (SVM). Our treatment is based on conversion of soft-margin SVM constrained optimization problem to an unconstrained form, and solving it using newly developed Sequential Subspace Optimization (SESOP) method. SESOP is a general tool for large-scale smooth unconstrained optimization. At each iteration … Read more