The stable set problem and the lift-and-project ranks of graphs

We study the lift-and-project procedures for solving combinatorial optimization problems, as described by Lov\’asz and Schrijver, in the context of the stable set problem on graphs. We investigate how the procedures’ performances change as we apply fundamental graph operations. We show that the odd subdivision of an edge and the subdivision of a star operations … Read more

Semidefinite relaxations for Max-Cut

We compare several semidefinite relaxations for the cut polytope obtained by applying the lift and project methods of Lov\’asz and Schrijver and of Lasserre. We show that the tightest relaxation is obtained when aplying the Lasserre construction to the node formulation of the max-cut problem. This relaxation $Q_t(G)$ can be defined as the projection on … Read more

A comparison of the Sherali-Adams, Lov\’asz-Schrijver and Lasserre relaxations for sh-1$ programming

Sherali and Adams \cite{SA90}, Lov\’asz and Schrijver \cite{LS91} and, recently, Lasserre \cite{Las01b} have proposed lift and project methods for constructing hierarchies of successive linear or semidefinite relaxations of a $0-1$ polytope $P\subseteq \oR^n$ converging to $P$ in $n$ steps. Lasserre’s approach uses results about representations of positive polynomials as sums of squares and the dual … Read more

Generating Convex Polynomial Inequalities for Mixed 0-1 Programs

We develop a method for generating valid convex polynomial inequalities for mixed 0-1 convex programs. We also show how these inequalities can be generated in the linear case by defining cut generation problems using a projection cone. The basic results for quadratic inequalities are extended to generate convex polynomial inequalities. ArticleDownload View PDF

Tighter Linear and Semidefinite Relaxations for Max-Cut Based on the Lov\’asz-Schrijver Lift-and-Project Procedure

We study how the lift-and-project method introduced by Lov\’az and Schrijver \cite{LS91} applies to the cut polytope. We show that the cut polytope of a graph can be found in $k$ iterations if there exist $k$ edges whose contraction produces a graph with no $K_5$-minor. Therefore, for a graph with $n\ge 4$ nodes, $n-4$ iterations … Read more