Political districting to optimize the Polsby-Popper compactness score with application to voting rights

In the academic literature and in expert testimony, the Polsby-Popper score is the most popular way to measure the compactness of a political district. Given a district with area \(A\) and perimeter \(P\), its Polsby-Popper score is given by \( (4 \pi A)/P^2\). This score takes values between zero and one, with circular districts achieving … Read more

Submodular maximization and its generalization through an intersection cut lens

We study a mixed-integer set \(\mathcal{S}:=\{(x,t) \in \{0,1\}^n \times \mathbb{R}: f(x) \ge t\}\) arising in the submodular maximization problem, where \(f\) is a submodular function defined over \(\{0,1\}^n\). We use intersection cuts to tighten a polyhedral outer approximation of \(\mathcal{S}\). We construct a continuous extension \(\mathsf{F}\) of \(f\), which is convex and defined over the … Read more

A classification method based on a cloud of spheres

In this article we propose a binary classification model to distinguish a specific class that corresponds to a characteristic that we intend to identify (fraud, spam, disease). The classification model is based on a cloud of spheres that circumscribes the points of the class to be identified. It is intended to build a model based … Read more

A combined model for chain expansion including the possibility of locating a new facility and modification and/or closing of existing facilities

The problem of an expanding chain (it already has some facilities) in a given area is considered. It may locate a new facility, or vary (up or down) the quality of its existing facilities, or close some of them, or a combination of all those possibilities, whatever it is the best to maximize its profit, … Read more

Feasible rounding approaches and diving strategies in branch-and-bound methods for mixed-integer optimization

In this paper, we study the behavior of feasible rounding approaches for mixed-integer linear and nonlinear optimization problems (MILP and MINLP, respectively) when integrated into tree search of branch-and-bound. Our research addresses two important aspects. First, we develop insights into how an (enlarged) inner parallel set, which is the main component for feasible rounding approaches, … Read more