An exact algorithm for solving the ring star problem

This paper deals with the ring star problem that consists in designing a ring that pass through a central depot, and then assigning each non visited customer to a node of the ring. The objective is to minimize the total routing and assignment costs. A new chain based formulation is proposed. Valid inequalities are proposed … Read more

Building separating concentric balls to solve a multi-instance classification problem

In this work, we consider a classification problem where the objects to be classified are bags of instances which are vectors measuring d different attributes. The classification rule is defined in terms of a ball, whose center and radius are the parameters to be computed. Given a bag, it is assigned to the positive class … Read more

On linear infeasibility arising in intensity-modulated radiation therapy inverse planning

Intensity–modulated radiation therapy (IMRT) gives rise to systems of linear inequalities, representing the effects of radiation on the irradiated body. These systems are often infeasible, in which case one settles for an approximate solution, such as an {a,ß}–relaxation, meaning that no more than a percent of the inequalities are violated by no more than ß … Read more

Single-layer Cuts for Multi-layer Network Design Problems

We study a planning problem arising in SDH/WDM multi-layer telecommunication network design. The goal is to find a minimum cost installation of link and node hardware of both network layers such that traffic demands can be realized via grooming and a survivable routing. We present a mixed-integer programming formulation that takes many practical side constraints … Read more

A MIP Approach for some Practical Packing Problems: Balancing Constraints and Tetris-like Items

This paper considers packing problems with balancing conditions and items consisting of clusters of parallelepipeds (mutually orthogonal, i.e. tetris-like items). This issue is quite frequent in space engineering and a real-world application deals with the Automated Transfer Vehicle project (funded by the European Space Agency), at present under development. A Mixed Integer Programming (MIP) approach … Read more

Some Relations Between Facets of Low- and High-Dimensional Group Problems

In this paper, we introduce an operation that creates families of facet-defining inequalities for high-dimensional infinite group problems using facet-defining inequalities of lower-dimensional group problems. We call this family sequential-merge inequalities because they are produced by applying two group cuts one after the other and because the resultant inequality depends on the order of the … Read more

Maximum Utility Product Pricing Models and Algorithms Based on Reservation Prices

We consider a revenue management model for pricing a product line with several customer segments under the assumption that customers’ product choices are determined entirely by their reservation prices. We highlight key mathematical properties of the maximum utility model and formulate it as a mixed-integer programming problem, design heuristics and valid cuts. We further present … Read more

A Short Note on the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: min { cx | P (Ax>= xi) >= p, x_{j} in {0,1} j in N} where A is a 0-1 matrix, xi is a random 0-1 vector and p in (0,1] is the threshold probability level. In a recent development … Read more

Efficient Formulations for the Multi-Floor Facility Layout Problem with Elevators

The block layout problem for a multi-floor facility is an important sub class of the facility layout problem with practical applications when the price of land is high or when a compact building allows for more efficient environmental control. Several alternative formulations for the block layout problem of a multi-floor facility are presented, where the … Read more

MIP Reformulations of the Probabilistic Set Covering Problem

In this paper we address the following probabilistic version (PSC) of the set covering problem: $min \{ cx \ |\ {\mathbb P} (Ax\ge \xi) \ge p,\ x_{j}\in \{0,1\}^N\}$ where $A$ is a 0-1 matrix, $\xi$ is a random 0-1 vector and $p\in (0,1]$ is the threshold probability level. We formulate (PSC) as a mixed integer … Read more