Asymptotic Consistency for Nonconvex Risk-Averse Stochastic Optimization with Infinite Dimensional Decision Spaces

Optimal values and solutions of empirical approximations of stochastic optimization problems can be viewed as statistical estimators of their true values. From this perspective, it is important to understand the asymptotic behavior of these estimators as the sample size goes to infinity, which is both of theoretical as well as practical interest. This area of … Read more

Revisiting some results on the sample complexity of multistage stochastic programs and some extensions

In this work we present explicit definitions for the sample complexity associated with the Sample Average Approximation (SAA) Method for instances and classes of multistage stochastic optimization problems. For such, we follow the same notion firstly considered in Kleywegt et al. (2001). We define the complexity for an arbitrary class of problems by considering its … Read more

A note on sample complexity of multistage stochastic programs

We derive a \emph{lower bound} for the \emph{sample complexity} of the Sample Average Approximation method for a certain class of multistage stochastic optimization problems. In previous works, \emph{upper bounds} for such problems were derived. We show that the dependence of the \emph{lower bound} with respect to the complexity parameters and the problem’s data are comparable … Read more

On the convergence of decomposition methods for multi-stage stochastic convex programs

We prove the almost-sure convergence of a class of sampling-based nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to … Read more

Analysis of Stochastic Dual Dynamic Programming Method

In this paper we discuss statistical properties and rates of convergence of the Stochastic Dual Dynamic Programming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the underline data process is stagewise independent and consider the framework where at first a random sample from the original (true) distribution is generated and consequently … Read more

Validation Analysis of Robust Stochastic Approximation Method

The main goal of this paper is to develop accuracy estimates for stochastic programming problems by employing robust stochastic approximation (SA) type algorithms. To this end we show that while running a Robust Mirror Descent Stochastic Approximation procedure one can compute, with a small additional effort, lower and upper statistical bounds for the optimal objective … Read more

Stochastic Approximation approach to Stochastic Programming

In this paper we consider optimization problems where the objective function is given in a form of the expectation. A basic difficulty of solving such stochastic optimization problems is that the involved multidimensional integrals (expectations) cannot be computed with high accuracy. The aim of this paper is to compare two computational approaches based on Monte … Read more

Stochastic Programming Approach to Optimization under Uncertainty

In this paper we discuss computational complexity and risk averse approaches to two and multistage stochastic programming problems. We argue that two stage (say linear) stochastic programming problems can be solved with a reasonable accuracy by Monte Carlo sampling techniques while there are indications that complexity of multistage programs grows fast with increase of the … Read more

On Complexity of Multistage Stochastic Programs

In this paper we derive estimates of the sample sizes required to solve a multistage stochastic programming problem with a given accuracy by the (conditional sampling) sample average approximation method. The presented analysis is self contained and is based on a, relatively elementary, one dimensional Cramer’s Large Deviations Theorem. CitationWorking paper, Georgia Institute of Technology, … Read more

Scenario Approximations of Chance Constraints

We consider an optimization problem of minimization of a linear function subject to chance constraints. In the multidimensional case this problem is, generically, a problem of minimizing under a nonconvex and difficult to compute constraints and as such is computationally intractable. We investigate the potential of conceptually simple scenario approximation of the chance constraints. The … Read more