Set-based Robust Optimization of Uncertain Multiobjective Problems via Epigraphical Reformulations

In this paper, we study a method for finding robust solutions to multiobjective optimization problems under uncertainty. We follow the set-based minmax approach for handling the uncertainties which leads to a certain set optimization problem with the strict upper type set relation. We introduce, under some assumptions, a reformulation using instead the strict lower type … Read more

Precise control of approximation quality in multicriteria optimization

Although many algorithms for multicriteria optimization provide good approximations, a precise control of their quality is challenging. In this paper we provide algorithmic tools to obtain exact approximation quality values for given approximations and develop a new method for multicriteria optimization guided by this quality. We show that the well-established “-indicator measure is NP-hard to … Read more

A parametric programming approach to redefine the global configuration of resource constraints of 0-1-Integer Linear Programming problems.

A mathematical programming approach to deal with the global configuration of resource constraints is presented. A specialized parametric programming algorithm to obtain the pareto set for the biobjective problem that appears to deal with the global configuration for 0-1-Integer Linear Programing problems is presented and implemented. Computational results for Multiconstrained Knapsack problems and Bounded Knapsack … Read more

A robust optimization model for the risk averse reservoir management problem

This paper presents a new formulation for the risk averse stochastic reservoir management problem. Using recent advances in robust optimization and stochastic programming, we propose a dynamic, multi-objective model based on minimization of a multidimensional risk measure associated with floods and droughts for a hydro-electrical complex. We present our model and then identify approximate solutions … Read more

Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems

The paper deals with the definition and the computation of surrogate upper bound sets for the bi-objective bi-dimensional binary knapsack problem. It introduces the Optimal Convex Surrogate Upper Bound set, which is the tightest possible definition based on the convex relaxation of the surrogate relaxation. Two exact algorithms are proposed: an enumerative algorithm and its … Read more

Solution of Nonlinear Equations via Optimization

This paper presents four optimization models for solving nonlinear equation systems. The models accommodate both over-specified and under-specified systems. A variable endogenization technique that improves efficiency is introduced, and a basic comparative study shows one of the methods presented to be very effective. CitationSiwale, I. (2013). Solution of nonlinear equation systems via optimization. Technical Report … Read more