On stochastic auctions in risk-averse electricity markets with uncertain supply

This paper studies risk in a stochastic auction which facilitates the integration of renewable generation in electricity markets. We model market participants who are risk averse and reflect their risk aversion through coherent risk measures. We uncover a closed-form characterization of a risk-averse generator’s optimal pre-commitment behaviour for a given real-time policy, both with and … Read more

Electric Power Infrastructure Planning: Mixed-Integer Programming Model and Nested Decomposition Algorithm

This paper addresses the long-term planning of electric power infrastructures considering high renewable penetration. To capture the intermittency of these sources, we propose a deterministic multi-scale Mixed-Integer Linear Programming (MILP) formulation that simultaneously considers annual generation investment decisions and hourly operational decisions. We adopt judicious approximations and aggregations to improve its tractability. Moreover, to overcome … Read more

A stochastic program with tractable time series and affine decision rules for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation for the reservoir management problem. Our problem specifically consists in minimizing the risk of floods over a fixed time horizon for a multi-dimensional hydro-electrical complex. We consider well-studied linear time series model and enhance the approach to consider heteroscedasticity. Using these stochastic processes under very general distributional … Read more

A robust optimization model for the risk averse reservoir management problem

This paper presents a new formulation for the risk averse stochastic reservoir management problem. Using recent advances in robust optimization and stochastic programming, we propose a dynamic, multi-objective model based on minimization of a multidimensional risk measure associated with floods and droughts for a hydro-electrical complex. We present our model and then identify approximate solutions … Read more

Optimization Techniques for the Brazilian Natural Gas Network Planning Problem

This work reports on modeling and numerical experience in solving the long-term design and operation planning problem of the Brazilian natural gas network. A stochastic approach to address uncertainties related to the gas demand is considered. Representing uncertainties by finitely many scenarios increases the size of the resulting optimization problem, and therefore the difficulty to … Read more

Optimizing Trading Decisions for Hydro Storage Systems using Approximate Dual Dynamic Programming

We propose a new approach to optimize operations of hydro storage systems with multiple connected reservoirs which participate in wholesale electricity markets. Our formulation integrates short-term intraday with long-term interday decisions. The intraday problem considers bidding decisions as well as storage operation during the day and is formulated as a stochastic program. The interday problem … Read more

Multistage Stochastic Portfolio Optimisation in Deregulated Electricity Markets Using Linear Decision Rules

The deregulation of electricity markets increases the financial risk faced by retailers who procure electric energy on the spot market to meet their customers’ electricity demand. To hedge against this exposure, retailers often hold a portfolio of electricity derivative contracts. In this paper, we propose a multistage stochastic mean-variance optimisation model for the management of … Read more