Affine recourse for the robust network design problem: between static and dynamic routing

Affinely-Adjustable Robust Counterparts provide tractable alternatives to (two-stage) robust programs with arbitrary recourse. We apply them to robust network design with polyhedral demand uncertainty, introducing the affine routing principle. We compare the affine routing to the well-studied static and dynamic routing schemes for robust network design. All three schemes are embedded into the general framework … Read more

Radio Planning of Energy-Aware Cellular Networks

The role of the Information and Communication Technology sector on productivity and economic growth is constantly increasing and, due to its pervasiveness, the ICT power consumption can no longer be ignored. Some energy-aware models and approaches have already been proposed for cellular networks, they aim at reducing power expenditures while decreasing network operators costs. However, … Read more

Randomized heuristics for the regenerator location problem

Telecommunication systems make use of optical signals to transmit information. The strength of a signal in an optical network deteriorates and loses power as it gets farther from the source, mainly due to attenuation. Therefore, to enable the signal to arrive at its intended destination with good quality, it is necessary to regenerate it periodically … Read more

Transmission Expansion Planning with Re-design

Expanding an electrical transmission network requires heavy investments that need to be carefully planned, often at a regional or national level. We study relevant theoretical and practical aspects of transmission expansion planning, set as a bilinear programming problem with mixed 0-1 variables. We show that the problem is NP-hard and that, unlike the so-called Network … Read more

Optimal structure of gas transmission trunklines

In this paper, we consider the optimal design of a straight pipeline system. Suppose a gas pipeline is to be designed to transport a specified flowrate from the entry point to the gas demand point. Physical and contractual requirements at supply and delivery nodes are known as well as the costs to buy and lay … Read more

Modelling Hop-Constrained and Diameter-Constrained Minimum Spanning Tree Problems as Steiner Tree Problems over Layered Graphs

The Hop-Constrained Minimum Spanning Tree Problem (HMSTP) is a NP-hard problem arising in the design of centralized telecommunication networks with quality of service constraints. We show that the HMSTP is equivalent to a Steiner Tree Problem (STP) in an adequate layered graph. We prove that the directed cut formulation for the STP defined in the … Read more

An exact algorithm for solving the ring star problem

This paper deals with the ring star problem that consists in designing a ring that pass through a central depot, and then assigning each non visited customer to a node of the ring. The objective is to minimize the total routing and assignment costs. A new chain based formulation is proposed. Valid inequalities are proposed … Read more

A new model and a computational study for Demand-wise Shared Protection

This report combines the contributions to INOC 2005 (Wessälly et al., 2005) and DRCN 2005 (Gruber et al., 2005). A new integer linear programming model for the end-to-end survivability concept deman d-wise shared protection (DSP) is presented. DSP is based on the idea that backup capacity is dedicated to a particular demand, but shared within … Read more

Provisioning Virtual Private Networks under traffic uncertainty

We investigate a network design problem under traffic uncertainty which arises when provisioning Virtual Private Networks (VPNs): given a set of terminals that must communicate with one another, and a set of possible traffic matrices, sufficient capacity has to be reserved on the links of the large underlying public network so as to support all … Read more

Domination between traffic matrices

A traffic matrix $D^1$ dominates a traffic matrix $D^2$ if $D^2$ can be routed on every (capacitated) network where $D^1$ can be routed. We prove that $D^1$ dominates $D^2$ if and only if $D^1$, considered as a capacity vector, supports $D^2$. We show several generalizations of this result. CitationCentro Vito Volterra, Universita’ di Roma Tor … Read more