New insights and algorithms for optimal diagonal preconditioning

Preconditioning (scaling) is essential in many areas of mathematics, and in particular in optimization. In this work, we study the problem of finding an optimal diagonal preconditioner. We focus on minimizing two different notions of condition number: the classical, worst-case type, \(\kappa\)-condition number, and the more averaging motivated \(\omega\)-condition number. We provide affine based pseudoconvex … Read more

Searching for Optimal Per-Coordinate Step-sizes with Multidimensional Backtracking

The backtracking line-search is an effective technique to automatically tune the step-size in smooth optimization. It guarantees similar performance to using the theoretically optimal step-size. Many approaches have been developed to instead tune per-coordinate step-sizes, also known as diagonal preconditioners, but none of the existing methods are provably competitive with the optimal per-coordinate stepsizes. We … Read more

Simple Efficient Solutions for Semidefinite Programming

This paper provides a simple approach for solving a semidefinite program, SDP\@. As is common with many other approaches, we apply a primal-dual method that uses the perturbed optimality equations for SDP, $F_\mu(X,y,Z)=0$, where $X,Z$ are $n \times n$ symmetric matrices and $y \in \Re^n$. However, we look at this as an overdetermined system of … Read more