Application of outer approximation to forecasting losses and scenarios in the target of portfolios with high of nonlinear risk

The purpose of this paper is to find appropriate solutions to concave quadratic programming using outer approximation algorithm, which is one of the algorithm of global optimization, in the target of the strong of concavity of object function i.e. high of nonlinear risk of portfolio. Firstly, my target model is a mathematical optimization programming to … Read more

A Scalable Algorithm for Sparse Portfolio Selection

The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum … Read more

Outer Approximation With Conic Certificates For Mixed-Integer Convex Problems

A mixed-integer convex (MI-convex) optimization problem is one that becomes convex when all integrality constraints are relaxed. We present a branch-and-bound LP outer approximation algorithm for an MI-convex problem transformed to MI-conic form. The polyhedral relaxations are refined with K* cuts} derived from conic certificates for continuous primal-dual conic subproblems. Under the assumption that all … Read more

Outer Approximation for Integer Nonlinear Programs via Decision Diagrams

As an alternative to traditional integer programming (IP), decision diagrams (DDs) provide a new solution technology for discrete problems based on their combinatorial structure and dynamic programming representation. While the literature mainly focuses on the competitive aspects of DDs as a stand-alone solver, we investigate their complementary role by studying IP techniques that can be … Read more

A Center-Cut Algorithm for Quickly Obtaining Feasible Solutions and Solving Convex MINLP Problems

Here we present a center-cut algorithm for convex mixed-integer nonlinear programming (MINLP) that can either be used as a primal heuristic or as a deterministic solution technique. Like many other algorithms for convex MINLP, the center-cut algorithm constructs a linear approximation of the original problem. The main idea of the algorithm is to use the … Read more

Using Regularization and Second Order Information in Outer Approximation for Convex MINLP

In this paper, we present two new methods for solving convex mixed-integer nonlinear programming problems based on the outer approximation method. The first method is inspired by the level method and uses a regularization technique to reduce the step size when choosing new integer combinations. The second method combines ideas from both the level method … Read more

Combinatorial Optimal Control of Semilinear Elliptic PDEs

Optimal control problems (OCP) containing both integrality and partial differential equation (PDE) constraints are very challenging in practice. The most wide-spread solution approach is to first discretize the problem, it results in huge and typically nonconvex mixed-integer optimization problems that can be solved to proven optimality only in very small dimensions. In this paper, we … Read more

Quadratic Outer Approximation for Convex Integer Programming

We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same … Read more

An Outer-Inner Approximation for separable MINLPs

A common structure in convex mixed-integer nonlinear programs is separable nonlinear functions. In the presence of such structures, we propose three improvements to the outer approximation algorithms. The first improvement is a simple extended formulation, the second is a refined outer approximation, and the third is a heuristic inner approximation of the feasible region. These … Read more

Optimization over the Efficient Set of a Bicriteria Convex Programming Problem

The problem of optimizing a real function over the efficient set of a multiple objective programming problem arises in a variety of applications. In this article, we propose an outer approximation algorithm for maximizing a function $h(x) = \varphi(f(x))$ over the efficient set $X_E$ of the bi-criteria convex programming problem $ {\rm Vmin} \{f(x)=(f_1(x), f_2(x))^T … Read more