Numerical Methods for Convex Multistage Stochastic Optimization

Optimization problems involving sequential decisions in  a  stochastic environment    were studied  in  Stochastic Programming (SP), Stochastic Optimal Control  (SOC) and Markov Decision Processes (MDP). In this paper we mainly concentrate on SP and  SOC modelling   approaches. In these frameworks there are natural situations  when the considered problems are  convex. Classical approach to sequential optimization … Read more

On Generalization and Regularization via Wasserstein Distributionally Robust Optimization

Wasserstein distributionally robust optimization (DRO) has found success in operations research and machine learning applications as a powerful means to obtain solutions with favourable out-of-sample performances. Two compelling explanations for the success are the generalization bounds derived from Wasserstein DRO and the equivalency between Wasserstein DRO and the regularization scheme commonly applied in machine learning. … Read more

Distributionally Robust Modeling of Optimal Control

The aim of this paper is to formulate several questions related to distributionally robust Stochastic Optimal Control modeling. As an example, the distributionally robust counterpart of the classical inventory model is discussed in details. Finite and infinite horizon stationary settings are considered. ArticleDownload View PDF

Risk-Averse Stochastic Optimal Control: an efficiently computable statistical upper bound

In this paper, we discuss an application of the SDDP type algorithm to nested risk-averse formulations of Stochastic Optimal Control (SOC) problems. We propose a construction of a statistical upper bound for the optimal value of risk-averse SOC problems. This outlines an approach to a solution of a long standing problem in that area of … Read more

Risk-averse Regret Minimization in Multi-stage Stochastic Programs

Within the context of optimization under uncertainty, a well-known alternative to minimizing expected value or the worst-case scenario consists in minimizing regret. In a multi-stage stochastic programming setting with a discrete probability distribution, we explore the idea of risk-averse regret minimization, where the benchmark policy can only benefit from foreseeing Delta steps into the future. … Read more

Dual SDDP for risk-averse multistage stochastic programs

Risk-averse multistage stochastic programs appear in multiple areas and are challenging to solve. Stochastic Dual Dynamic Programming (SDDP) is a well-known tool to address such problems under time-independence assumptions. We show how to derive a dual formulation for these problems and apply an SDDP algorithm, leading to converging and deterministic upper bounds for risk-averse problems. … Read more

Distributionally Robust Optimal Control and MDP Modeling

In this paper, we discuss Optimal Control and Markov Decision Process (MDP) formulations of multistage optimization problems when the involved probability distributions are not known exactly, but rather are assumed to belong to specified ambiguity families. The aim of this paper is to clarify a connection between such distributionally robust approaches to multistage stochastic optimization. … Read more

Risk-Averse Optimal Control

In the context of multistage stochastic optimization, it is natural to consider nested risk measures, which originate by repeatedly composing risk measures, conditioned on realized observations. Starting from this discrete time setting, we extend the notion of nested risk measures to continuous time by adapting the risk levels in a time dependent manner. This time … Read more

General risk measures for robust machine learning

A wide array of machine learning problems are formulated as the minimization of the expectation of a convex loss function on some parameter space. Since the probability distribution of the data of interest is usually unknown, it is is often estimated from training sets, which may lead to poor out-of-sample performance. In this work, we … Read more

Closed-form solutions for worst-case law invariant risk measures with application to robust portfolio optimization

Worst-case risk measures refer to the calculation of the largest value for risk measures when only partial information of the underlying distribution is available. For the popular risk measures such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), it is now known that their worst-case counterparts can be evaluated in closed form when only the first … Read more